DEVELOPMENT OF A SYSTEM-WIDE PREDATOR CONTROL PROGRAM: STEPWISE IMPLEMENTATION OF A PREDATION INDEX, PREDATOR CONTROL FISHERIES, AND EVALUATION PLAN IN THE COLUMBIA RIVER BASIN

2006 ANNUAL REPORT

Prepared by:
Russell Porter
Pacific States Marine Fisheries Commission

In Cooperation with:
Oregon Department of Fish and Wildlife
Washington Department of Fish and Wildlife

Prepared for:
U.S. Department of Energy

Bonneville Power Administration
Environment, Fish and Wildlife
P.O. Box 3621

Portland, OR 97208-3621
Project Number 199007700
Contract Number 00026763

Table of Contents

Executive Summary 5
Report A - Sport Reward Fishery in the Columbia and Snake Rivers 11
Acknowledgments 12
Abstract 13
Introduction 14
Methods of Operation 15
Fishery Operation 15
Boundaries and Season 15
Registration Stations 16
Reward System 17
Angler Sampling 17
Returning Anglers 18
Non-Returning Anglers 18
Northern Pikeminnow Handling Procedures 19
Biological Sampling 19
PIT Tag Detection 19
Northern Pikeminnow Processing 20
Results and Discussion 20
Northern Pikeminnow Harvest 20
Harvest by Week 21
Harvest by Fishing Location 22
Harvest by Registration Station 23
Harvest by Species/Incidental Catch 24
Angler Effort 27
Effort by Week 28
Effort by Fishing Location 29
Effort by Registration Station 29
Catch Per Angler Day (CPUE) 30
CPUE by Week 31
CPUE by Fishing Location 31
CPUE by Registration Station 32
Angler Totals 32
Tag Recovery 35
Summary 38
Recommendations for the 2007 Season 39
References 40
Report B - Sport Reward Payments - 2006 43
Introduction 44
Catch and Payments 44
Tagged Fish Payments 44
Accounting 44
2006 Sport Reward Payments Summary 45
Report C - Indexing and Fisheries Evaluation 46
Summary 47
Introduction 49
Methods 49
Fishery Evaluation, Predation Estimates, and Tag Loss 49
Field Procedures 49
Data Analysis 50
Age Validation 53
Field Procedures 53
Laboratory Procedures 53
Data Analysis 54
Biological Evaluation 55
Field Procedures 55
Laboratory Procedures 55
Data Analysis 55
Results 57
Fishery Evaluation, Predation Estimates, and Tag Loss 57
Age Validation 61
Biological Evaluation 66
Discussion 78
Fishery Evaluation, Predation Estimates, and Tag Loss 78
Age Validation 80
Biological Evaluation 82
Acknowledgments 85
References 86
Appendix A. Sampling Effort and Timing in the Lower Columbia and Snake Rivers 92
Appendix B. Exploitation Rates for Northern Pikeminnow 96
Appendix C. Biological Evaluation of Northern Pikeminnow, Smallmouth Bass, and Walleye in the Lower Columbia and Snake Rivers, 1990-2006 105
Report D - Dam Angling Test Fishery - 2006 116
Introduction 117
Methods 117
Results 117
Conclusions 117

2006 Executive Summary

by
Russell G. Porter

This report presents results for year fourteen in a basin-wide program to harvest northern pikeminnow ${ }^{1}$ (Ptychocheilus oregonensis). This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the $10-20 \%$ mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a $10-20 \%$ rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%.

To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991-a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible.

Estimates of combined annual exploitation rates resulting from the sport-reward and dam-angling fisheries remained at the low end of our target range of $10-20 \%$. This suggested the need for additional effective harvest techniques. During 1991 and 1992, we developed and tested a modified (small-sized) Merwin trapnet. We found this floating trapnet to be very effective in catching northern pikeminnow at specific sites. Consequently, in 1993 we examined a system-wide fishery using floating trapnets, but found this fishery to be ineffective at harvesting large numbers of northern pikeminnow on a system-wide scale.

In 1994, we investigated the use of trap nets and gillnets at specific locations where concentrations of northern pikeminnow were known or suspected to occur during the spring season (i.e., March through early June). In addition, we initiated a concerted effort to increase public participation in the sport-reward fishery through a series of promotional and incentive activities.

[^0]In 1995,1996 , and 1997, promotional activities and incentives were further improved based on the favorable response in 1994. Results of these efforts are subjects of this annual report.

Evaluation of the success of test fisheries in achieving our target goal of a $10-20 \%$ annual exploitation rate on northern pikeminnow is presented in Report C of this report. Overall program success in terms of altering the size and age composition of the northern pikeminnow population and in terms of potential reductions in loss of juvenile salmonids to northern pikeminnow predation is also discussed in Report C.

Program cooperators include the Pacific States Marine Fisheries Commission (PSMFC), Oregon Department of Fish and Wildlife (ODFW), and Washington Department of Fish and Wildlife (WDFW), and the U.D. Department of Agriculture (USDA), Animal Damage Unit as a contractor to test Dam Angling. The PSMFC was responsible for coordination and administration of the program; PSMFC subcontracted various tasks and activities to ODFW and WDFW based on the expertise each brought to the tasks involved in implementing the program and dam angling to the USDA. Objectives of each cooperator were as follows.

1. WDFW (Report A): Implement a system-wide (i.e. Columbia River below Priest Rapids Dam and Snake River below Hells Canyon Dam) sport-reward fishery and operate a system for collecting and disposing of harvested northern pikeminnow.
2. PSMFC (Report B): Provide technical, contractual, fiscal and administrative oversight for the program. In addition, PSMFC processes and provides accounting for the reward payments to participants in the sport-reward fishery.
3. ODFW (Report C): Evaluate exploitation rate and size composition of northern pikeminnow harvested in the various fisheries implemented under the program together with an assessment of incidental catch of other fishes. Estimate reductions in predation on juvenile salmonids resulting from northern pikeminnow harvest and update information on year-class strength of northern pikeminnow.
4. USDA (Report D): Test dam angling and fishing in the Boat Restricted Zone (BRZ) at Bonneville and The Dalles dams.

Background and rationale for the Northern Pikeminnow Management Program can be found in Report A of our 1990 annual report (Vigg et al. 1990). Highlights of results of our work in 2006 by report are as follows:

Report A

Implementation of the Northern Pikeminnow Sport-Reward Fishery in the Columbia and Snake Rivers

1. Objectives for 2006 were to: (1) implement a recreational fishery that rewards anglers who harvest northern pikeminnow $\geq 228 \mathrm{~mm}$ (9 inches) total length, (2) collect, compile, and report data on angler participation, catch and harvest of northern pikeminnow and other fish species, and success rtes of participating anglers during the season, (3) examine collected northern pikeminnow for the presence of external tags, PIT tags, and signs of tag loss, (4) collect biological data on northern pikeminnow and other fish species returned to registration stations, (5) scan northern pikeminnow for the presence of consumed salmonids containing PAIT tags, and (6) Survey non-returning fishery participants who were targeting northern pikeminnow to obtain catch and harvest data on all fish species caught.
2. The NPSRF was conducted from May 1 through October 15, 2006 from the Dalles dam downstream and from May 15 through October 15, 2006 from the Dalles dam upstream. Seventeen registration stations were operated throughout the lower Snake and Columbia rivers.
3. A total of 233,924 northern pikeminnow ≥ 9 inches in total length were harvested during the 2006 season with 4,468 angler days spent harvesting these fish. Catch-per-angler-day for all anglers during the season was 7.38 fish.
4. Anglers submitted 217 northern pikeminnow with external tags, and an additional 99 with what may be tag wounds, but no tag, fin clip or Pit Tag. A total of 233,924 northern pikeminnow were individually scanned for the presence of salmonid PIT tags in their gut. A total of 168 salmonid PIT tags were detected and the codes recorded for transmittal to the PITAGIS database.

Report B

Northern Pikeminnow Sport-Reward Fishery Payments

1. For 2006 the rewards paid to anglers were the same as in the 2005 season. Anglers were paid $\$ 4, \$ 5$, and $\$ 8$ per fish for the three payment tiers (up to 100 fish, 101-400 fish and 401 and up) during the season. The rewards for a tagged fish were $\$ 500$ per fish.
2. During 2006, excluding tagged fish, rewards paid totaled $\$ 1,460,722$ for 231,626 fish.
3. A total of 216 tagged fish vouchers were paid. The total season tag rewards paid totaled $\$ 108,000$.
4. A total of 1,469 separate successful anglers received payments during the season.
5. The total for all payments for non-tagged and tagged pikeminnows in 2006 was \$1,568,722.

Report C

Development of a Systemwide Predator Control Program: Indexing and Fisheries Evaluation

1. Objectives were to determine and evaluate: (1) northern pikeminnow exploitation rates; predation estimates, spaghetti tag loss rates, and age validation work; (2) population parameters of northern pikeminnow, smallmouth bass Micropterus dolomieu, and walleye Sander vitreus in The Dalles and John Day reservoirs, and (3) possible compensatory responses by these species.
2. System-wide exploitation in 2006 of northern pikeminnow 200 mm or greater in fork length was 14.6% which incorporated a tag loss of 9.9%. Additional tag recaptures from the dam angling fishery increased total system-wide exploitation to 14.8%. Sport-reward exploitation of fish $\geq 250 \mathrm{~mm}$ FL was 17.1%, the third highest exploitation rate since program inception.
3. Biological indexing in the lower Columbia River continues as part of the predator community evaluation. In 2006, northern pikeminnow abundance indices in The Dalles and John Day reservoirs were among the lowest observed to date. The consumption index value for the John Day Dam tailrace was the highest to date, while consumption indices in other areas were generally low. Predation indices were similar to or lower than previous years. Although 66% of northern pikeminnow stomachs were empty, all identifiable fish remains consisted of juvenile salmonids.
4. A total of 279 scale-opercle pairs were aged from northern pikeminnow in 2006. Complete agreement (i.e., zero discrepancy) on ages assigned by the two readers was 86.7% for scales, and 83.5% for opercles. A total of 284 operculum samples from recaptured pikeminnows by anglers; detectable oxytetracycline (OTC)
marks were found in 93% of the samples. The correct number of annuli after the OTC mark occurred 75.7% of the time.
5. Densities of smallmouth bass increased in The Dalles and John Day reservoirs during the past decade, while northern pikeminnow abundance declined. Relative weights for smallmouth bass also increased during the same time. Although smallmouth bass proportional stock density (PSD) in The Dalles Reservoir showed that the population there appears to be balanced, PSD in John Day Reservoir indicated a potentially unstable population with higher than optimal recruitment to the stock. Walleye abundance was low compared to other predators such as northern pikeminnow and smallmouth bass. The age distribution of walleye has remained relatively stable since 1992. Although there are some signs of possible compensation by predators to the sustained removal of northern pikeminnow by the NPMP, the indicators are localized, and other density independent factors can have similar effects. At this time there does not seem to be a system-wide predator response to the removal program.

Report D

Pilot studies for dam angling and Boat Restricted Zone fishing at Bonneville and The Dalles dams

1. Two five man fishing crews were utilized to fish from May 1, 2006 through August 6, 2006 at Bonneville and The Dalles dams.
2. In general, fishing from Bonneville dam was difficult with access to the water restricted by the project structure. Dam angling from The Dalles was far more productive.
3. Fishing in the Boat Restricted Zone (BRZ) at Bonneville was also difficult with access to the BRZ made circuitous and hazardous by the spill. Fishing in the BRZ at The Dalles dam was not tested until the last week of the fishery.
4. Dam angling from Bonneville dam for a total of 157 angler hours yielded only 19 pikeminnow. Dam angling from The Dalles for 1,337 angler hours yielded 2, 406 pikeminnow.
5. Fishing in the BRZ at Bonneville dam for 812 angler hours yielded 822 pikeminnow. Fishing in the BRZ at The Dalles for 80 angler hours yielded 80 pikeminnow
6. Pikeminnow caught in the BRZ averaged 409 mm (16 inches), while those caught from the dam averaged 422 mm (16.6 inches). Fish caught in the pools above the
dams averaged 360 mm (14.2 inches), while those caught by boat above the dams averaged 369 mm (14.5 inches).

Report A

Implementation of the Northern Pikeminnow Sport-Reward Fishery in the Columbia and Snake Rivers

2006 Annual Report

Prepared by:
Eric C. Winther
John D. Hone
Richard C. Bruce

[^1]
ACKNOWLEDGEMENTS

This project is funded by the Bonneville Power Administration (BPA), William Maslen, Project Manager and John Skidmore, COTR (Contract DE-BI719-94BI24514). We thank Carlene Stenehjem at BPA-Public Affairs; Tom Friesen and his staff at the Oregon Department of Fish and Wildlife (ODFW); and Russell Porter and his staff at the Pacific States Marine Fisheries Commission (PSMFC) for their coordination.

We are grateful to the City of Rainier for the use of the Rainier boat ramp; The City of Richland for the use of Columbia point Park; the Cowlitz County Parks and Recreation Department for the use of the Willow Grove boat ramp; The Port of Camas/Washougal for the use of the Camas/Washougal boat ramp; the Port of Cathlamet for the use of the Cathlamet Marina; the Port of Kalama for the use of the Kalama Marina; the Port of The Dalles for the use of The Dalles Boat Basin; the Port of Cascade Locks for the use of Marine Park; the Port of Umatilla for the use of the Umatilla Marina; the Portland Regional Parks Department for the use of the M.J. Gleason Boat Ramp and Chinook Landing; the U.S. Army Corps of Engineers for the use of Giles French Park, and the Greenbelt Boat Ramp; the U.S. Forest Service for the use of Bonneville Trailhead; the Washington Department of Transportation for the use of the Vernita Bridge Rest Area; Rod and Sharon Bailey for the use of Lyon's Ferry Marina; and Dave and Linda Petersen for the use of Boyer Park.

We appreciate the efforts of Beverly Buitenbos, Dick Buitenbos, Trever Barker, Melissa Dexheimer, Bill Fleenor, Leif Fox, Andrew Fritz, Andrew Harwood, Travis Harwood, Maria Holmes, Jeff Lesselyoung, Darrin Mayer, Derrick Meaghers, Eric Meyer, Linda Moore, Sabrina Peters, Cole Shelton, Jonathan Stoddard, Jason Swindle, Robert Warrington, Alyce Wells, Dennis Werlau, and Nathan Woodard for operating the sportreward fishery registration stations.

We also recognize Diana Murillo for her excellent work in computer data entry and document verification, Fella Tanaka for her numerous phone survey interviews, Kathleen Moyer for serving as the lead technician for the PIT tag recovery portion of the program, as well as Paul Dunlap for producing our weekly field activity reports, overseeing the Sport-Reward hotline, and helping to keep the program operating smoothly throughout the season.

Abstract

We are reporting on the progress of the Northern Pikeminnow Ptychocheilus oregonensis Sport-Reward Fishery (NPSRF) implemented by the Washington Department of Fish and Wildlife (WDFW) on the Columbia and Snake Rivers from May 1 through October 1, 2006. The objectives of this project were to (1) implement a recreational fishery that rewards recreational anglers for harvesting northern pikeminnow $\geq 228 \mathrm{~mm}$ (9 inches) total length (TL), (2) collect, compile, and report data on angler participation, catch and harvest of northern pikeminnow and other fish species, as well as success rates of participants during the season, (3) examine collected northern pikeminnow for the presence of external tags, fin clips, and signs of tag loss, (4) collect biological data on northern pikeminnow and other fish species returned to registration stations, (5) scan northern pikeminnow for the presence of consumed salmonids containing Passive Integrated Transponder (PIT) tags, and (6) survey non-returning NPSRF participants targeting northern pikeminnow in order to obtain catch and harvest data on fish species caught, and (7) examine and process all northern pikeminnow caught by U.S. Department of Agriculture (USDA) angling crews operating at The Dalles and Bonneville dams to recover spaghetti and/or PIT tags.

A total of 233,924 northern pikeminnow $\geq 228 \mathrm{~mm}$ and 5,955 pikeminnow $<228 \mathrm{~mm}$ were harvested during the 2006 NPSRF season. There were a total of 4,468 different anglers who spent 31,693 angler days participating in the fishery. Catch per unit effort for combined returning and non-returning anglers was 7.38 fish/angler day. The Oregon Department of Fish and Wildlife (ODFW) estimated that the overall exploitation rate for the 2006 NPSRF was 14.6%.

Anglers submitted 217 northern pikeminnow with external spaghetti tags, of which there were 210 with both spaghetti and PIT tags. There were an additional 99 northern pikeminnow with possible tag wounds and/or fin clips, but without spaghetti or PIT tags. A total of 168 PIT tags from consumed juvenile salmonids were detected and interrogated from northern pikeminnow received during the 2006 NPSRF.

Peamouth Mylocheilus caurinus, smallmouth bass Micropterus dolomieu, white sturgeon Acipenser transmontanus, and channel catfish Ictalurus punctatus were the fish species most frequently harvested by NPSRF anglers targeting northern pikeminnow. The incidental catch of salmonids Oncorhynchus spp, by participating anglers targeting northern pikeminnow remained below established limits for the Northern Pikeminnow Management Program.

INTRODUCTION

Mortality of juvenile salmonids Oncorhynchus spp. migrating through the Columbia River system is a major concern of the Columbia Basin Fish and Wildlife Program, and predation is an important component of mortality (NPPC 1987a). Northern pikeminnow Ptychocheilus oregonensis, formerly known as northern squawfish (Nelson et al. 1998), are the primary piscine predator of juvenile salmonids in the Lower Columbia and Snake River Systems (Rieman et al. 1991). Rieman and Beamesderfer (1990) predicted that predation on juvenile salmonids could be reduced by up to 50% with a sustained exploitation rate of $10-20 \%$ on northern pikeminnow $>275 \mathrm{~mm}$ FL (11 inches total length). The Northern Pikeminnow Management Program (NPMP) was created in 1990, with the goal of implementing fisheries which achieve the recommended $10-20 \%$ annual exploitation on northern pikeminnow $>275 \mathrm{~mm}$ FL within the program area (Vigg and Burley 1989). In 2000, NPMP administrators reduced the minimum size for eligible (reward size) northern pikeminnow to 228 mm FL (9 inches total length) in response to recommendations contained in a review of NPMP justification, performance, and costeffectiveness (Hankin and Richards 2000). Beginning in 1991, the Washington Department of Fish and Wildlife (WDFW) was contracted to conduct the NPSRF component of the NPMP (Burley et al. 1992). The NPSRF enlists recreational anglers to harvest reward sized (≥ 9 inches total length) northern pikeminnow from within program boundaries on the Columbia and Snake Rivers by using a monetary reward system. Since 1991, anglers participating in the NPSRF have harvested more than 2.96 million reward sized northern pikeminnow and spent more than 635,000 angler days of effort to become the NPMP's most successful component for achieving the annual $10-20 \%$ exploitation rate on northern pikeminnow within the program boundaries (Klaybor et al. 1993; Friesen and Ward 1999).

The 2006 NPSRF maintained the tiered angler reward system developed in 1995 (Hisata et al. 1995) which paid anglers higher rewards per fish based on achieving designated harvest levels and a separate bonus reward for returning northern pikeminnow spaghetti tagged by the Oregon Department of Fish and Wildlife (ODFW) as part of the NPSRF's biological evaluation. Catch and harvest data were collected from returning anglers, and non-returning anglers in order to monitor the effects of the NPSRF on other Columbia basin fishes.

The objectives of the 2006 NPSRF were to (1) implement a public fishery that rewards recreational anglers to harvest northern pikeminnow $\geq 228 \mathrm{~mm}$ (9 inches) total length, (2) collect, compile, and report data on angler participation, catch and harvest of northern pikeminnow and other fish species, and success rates of participating anglers during the season, (3) examine collected northern pikeminnow for the presence of external tags, fin-clips, and signs of tag loss, (4) collect biological data on northern pikeminnow and other fish species returned to registration stations, (5) scan northern pikeminnow for the presence of consumed salmonids containing Passive Integrated Transponder (PIT) tags, (6) survey non-returning fishery participants targeting northern pikeminnow in order to obtain catch and harvest data on fish species caught, and (7) examine and process all northern pikeminnow caught by U.S. Department of Agriculture
(USDA) angling crews operating at The Dalles and Bonneville dams to recover spaghetti and/or PIT tags.

METHODS OF OPERATION

Fishery Operation

Boundaries and Season

The NPSRF was conducted on the Columbia River from the mouth to the boat-restricted zone below Priest Rapids Dam, and on the Snake River from the mouth to the boatrestricted zone below Hells Canyon Dam (Figure 1). In addition, anglers were allowed to harvest (and submit for payment) northern pikeminnow caught in backwaters, sloughs, and up to 400 feet from the mouth of tributaries within this area.

Figure 1. Northern Pikeminnow Sport-Reward Fishery Program Area
The NPSRF was fully implemented from May 15 through October 1, 2006. In addition, twelve stations below the John Day Dam conducted a two week long "pre-season" beginning on May 1, 2006 in order to take advantage of favorable river conditions that provided anglers with an earlier opportunity to begin harvesting northern pikeminnow.

Registration Stations

Seventeen registration stations (Figure 2) were located on the Columbia and Snake Rivers to provide anglers with access to the Sport-Reward Fishery. WDFW technicians set up daily (seven days a week) registration stations at designated locations (normally public boat ramps or parks) which were available to anglers between two and eight hours per day during the season. Technicians registered anglers to participate in the NPSRF, collected angler creel information, issued pay vouchers to anglers returning with eligible

1. Cathlamet Marina (12-4 pm)
2. Willow Grove Boat Ramp ($5-8 \mathrm{pm}$)
3. Rainier Marina ($4-8 \mathrm{pm}$)
4. Kalama Marina (11:30am-3 pm)
5. M. James Gleason Boat Ramp (12-8 pm)
6. Chinook Landing (7:30-10 am)
7. Washougal Boat Ramp (12-8 pm)
8. The Fishery (4-8:30 pm)
9. Bonneville Trail Head (11am-4:00 pm)
10.The Dalles Boat Basin (12-8 pm)
10. Umatilla Marina ($4-6 \mathrm{pm}$)
11. Giles French (12-8 pm)
12. Columbia Point Park (11am-5:30 pm)
13. Vernita Bridge (3:30-7:30 pm)
14. Lyon's Ferry (9:30am-1 pm)
15. Boyer Park ($11: 30 \mathrm{am}-2: 30 \mathrm{pm}$)
16. Greenbelt (3:30-7:30 pm)

Figure 2. 2006 Northern Pikeminnow Sport Reward Fishery Registration Stations
northern pikeminnow, recorded biological data, scanned northern pikeminnow for the presence of PIT tags, and provided Sport-Reward Fishery information to the public. Selfregistration boxes were located at each station so anglers could self register when WDFW technicians were not present.

Reward System

The 2006 NPSRF rewarded anglers for harvesting northern pikeminnow $\geq 228 \mathrm{~mm}$ TL (9 inches). The 2006 NPSRF maintained the tiered angler reward system developed in 1995 (Hisata et al. 1995) that paid anglers a higher reward per fish once they had reached designated harvest levels over the course of the season. To receive payment, anglers returned their catch (daily) to the location where they had registered. WDFW technicians identified the angler's fish and issued a payment voucher for the total number of eligible northern pikeminnow. Anglers mailed payment vouchers to the Pacific States Marine Fisheries Commission (PSMFC) for redemption. Anglers returning with northern pikeminnow that were spaghetti-tagged by ODFW as part of the biological evaluation of the fishery (Vigg et al. 1990), were issued a separate tag payment voucher that was mailed to ODFW for tag verification before payment was made to the angler by PSMFC. During the 2006 season, the NPSRF retained the pay levels used in 2005 (Bruce et al. 2005) which paid anglers $\$ 4$ each for their first 100 northern pikeminnow, $\$ 5$ each for numbers 101-400, and $\$ 8$ each for all fish over 400. Anglers were paid $\$ 500$ for each northern pikeminnow they turned in which had been spaghetti-tagged by ODFW.

Angler Sampling

Angler data and creel data for the NPSRF were compiled from angler registration forms. One registration form represented one angler day. Angler data consisted of name, date, fishing license number, phone number, and city, state, zip code of participating angler. Creel data recorded by WDFW technicians included fishing location (Figure 3), and primary species targeted (Appendix B). Anglers were asked if they specifically fished for northern pikeminnow at any time during their fishing trip. A "No" response ended the exit interview. A "Yes" response prompted technicians to ask the angler (and record data), how many of each species of fish were caught, harvested or released while targeting northern pikeminnow. A fish was considered "caught" when the angler touched the fish, whether it was released or harvested. Fish returned to the water alive were defined as "released". Fish that were retained by the angler or not returned to the water alive were considered "harvested".

Fishing Locations:

1. Below Bonneville Dam
2. Mouth of the Snake River to Ice Harbor Dam
3. Bonneville Reservoir
4. McNary Reservoir
5. Lower Monumental Reservoir
6. The Dalles Reservoir
7. John Day Reservoir
8. Little Goose Reservoir
9. McNary Reservoir to the Mouth of the Snake River
10. Mouth of the Snake River to Priest Rapids Dam
11. Lower Granite Reservoir to the Mouth of the Clearwater River 12. Mouth of Clearwater River to Hell's Canyon Dam

Figure 3. Fishing location codes used for the 2006 Northern Pikeminnow Sport-Reward Fishery

Returning Anglers

Technicians interviewed all returning anglers at each registration station to obtain any missing angler data, and to record creel data from each participant's angling day. Creel data from caught and released fishes were recorded from angler recollection. Creel data from all harvested fish species were recorded from visual observation.

Non-Returning Anglers

Non-returning angler data was compiled from the pool of anglers who had registered for the NPSRF and targeted northern pikeminnow, but did not return to a registration station to participate in an exit interview. WDFW attempted to survey 20% of the NPSRF's non-returning anglers using a telephone survey in order to obtain creel data from that segment of the NPSRF's participants. To obtain the 20% sample, non-returning anglers were randomly selected from each registration station for each week. A technician called anglers from each random sample until the 20% sample was attained. Non-returning anglers were surveyed with the same exit interview questions used for returning anglers. Anglers were asked: "did you specifically fish for northern pikeminnow at any time during your fishing trip?" With a "Yes" response, anglers were asked to report the number and species of adult and/or juvenile salmonids and the number of reward size northern pikeminnow that were caught and harvested/released while they targeted northern pikeminnow. Angler catch and harvest data were not collected from nonreturning anglers who did not target northern pikeminnow on their fishing trip. In addition, non-returning angler catch and harvest data for non-salmonid species were not
collected in 2006 as it was last obtained in 2005 and trends for these species have remained consistent over the NPMP's 16 year history (Winther et al. 1996). These data will be again collected in 2010 to identify any variance from non-returning angler trends observed to date within the Sport-Reward Fishery.

Northern Pikeminnow Handling Procedures

Biological Sampling

Technicians examined all fishes returned to registration stations and recorded species as well as number of fish per species. Technicians checked all northern pikeminnow for the presence of external tags (spaghetti or dart), fin-clip marks, and signs of tag loss. Fork lengths (FL) and sex of northern pikeminnow as well as any other harvested fish species were recorded whenever possible. Complete biological data were collected from all tagloss and spaghetti tagged northern pikeminnow including FL, sex (determined by evisceration), scale, and opercle samples. Spaghetti tagged and tag-loss northern pikeminnow carcasses were then labeled and frozen for data verification and/or tag recovery at a later date. Data from spaghetti tags were recorded on a tag envelope as well as on WDFW data forms. The spaghetti tag was then placed in the tag envelope, stapled to the tag payment voucher and given to the angler to submit to ODFW for verification.

PIT Tag Detection

All northern pikeminnow collected during the 2006 NPSRF were also scanned for passive integrated transponder (PIT) tags. Northern pikeminnow harvested by anglers participating in the NPSRF have been found to ingest juvenile salmonids which have been PIT tagged by other studies within the basin (Glaser et al. 2000). In addition, PIT tags have also been used by ODFW as a secondary mark (since 2003) in all northern pikeminnow fitted with spaghetti tags as part of the NPMP's biological evaluation activities. The use of PIT tags rather than fin clips as a secondary mark in northern pikeminnow has improved the NPSRF's estimate of tag loss, and resulted in a more accurate estimate of exploitation for the NPSRF. WDFW technicians scanned 100% of all northern pikeminnow returned to registration stations for PIT tags using two types of PIT tag "readers". Northern Pikeminnow were scanned using primarily Destron Fearing portable transceiver systems (model \#FS2001F) to record information from PIT tag detections for submission to the Columbia Basin PIT tag information System (PTAGIS). The NPSRF also used Allflex ISO Compatible RF/ID Portable Readers (model \#RS601) to scan northern pikeminnow and assist in recovery of initial PIT tag data when the Destron readers were not available. Scanning began on the first day of the NPSRF preseason and continued at all stations throughout the rest of the year. Technicians individually scanned all reward sized northern pikeminnow for PIT tag presence and complete biological data were recorded from pikeminnow with positive readings. All PIT tagged northern pikeminnow were labeled and preserved for later dissection and tag recovery. All data were verified after recovery of PIT tags and all PIT tag recovery data
were provided to ODFW and the Pit Tag Information System (PTAGIS) on a regular basis.

Northern Pikeminnow Processing

During biological sampling, all northern pikeminnow were eviscerated (to determine sex), or caudal clipped as an anti-fraud measure to eliminate the possibility of previously processed northern pikeminnow being resubmitted for payment. In 2006, most northern pikeminnow were caudal clipped rather than eviscerated in order to facilitate accurate recovery of PIT tags. Sampled northern pikeminnow were iced and transported to cold storage facilities from which they were ultimately delivered to rendering facilities for final disposal.

RESULTS AND DISCUSSION

Northern Pikeminnow Harvest

The NPSRF harvested a total of 233,924 reward size northern pikeminnow ($\geq 228 \mathrm{~mm}$ TL) during the 2006 season, achieving an estimated 14.6% exploitation rate (Takata et al., 2006). Although the 2006 harvest was lower by 7,433 fish than the previous year, it was the fourth highest season harvest in NPSRF history, and was 34% higher than the mean 1991-2005 season harvest of 174,457 (Figure 4). Total annual harvest of northern pikeminnow during the 2006 NPSRF remained well above the annual totals for the period 1991-2005, and was comparable to other high harvest seasons seen since the NPMP boosted angler incentives in the year 2000 (Glaser et al. 2000). In addition to reward size northern pikeminnow, the 2006 NPSRF also harvested 5,955 northern pikeminnow <228 mm TL.

NPSRF ANNUAL HARVEST BY YEAR

Year

Figure 4. Annual Harvest Totals for the Northern Pikeminnow Sport Reward Fishery

Harvest by Week

While the total annual harvest for the 2006 NPSRF was fairly close to the 2005 total, the weekly harvest totals for the 2006 NPSRF followed a different pattern than the 2005 NPSRF (Figure 5). While the weekly harvest peak for the 2006 NPSRF was nearly identical to 2005 (18,709 versus 18,298), mean weekly harvest was considerably lower (9,747 in 2006 versus 11,493 in 2005). Past NPSRF seasons have shown that early season weekly harvest totals (up to, and including the harvest peak), can be a good indicator of overall annual NPSRF harvest. Weekly harvest totals early in the 2006

Figure 5. 2005 Weekly NPSRF Harvest vs. 2004 Weekly Harvest.
NPSRF, were well below 2005 levels and did not even reach 2005 levels until the season peak in week 25 (Figure 6). Peak weekly harvest was also one week later in 2006 and ranged from 18,709 in week 25 (June 19-25) to only 3,553 during the first week of the season (May 1-7). Even though harvest then remained above 2005 levels for the rest of the year, total annual harvest for the 2006 NPSRF never did reach the 2005 total. That

2006 Harvest by Week

Figure 6. 2006 Weekly Northern Pikeminnow Sport-Reward Fishery Harvest.

Also takes into consideration the fact that the 2006 NPSRF lasted three weeks longer than in 2005. Mean weekly harvest for the first five weeks of the 2006 NPSRF was also lower than the average weekly harvest totals for NPSRF seasons from 1991-2005 (Figure 7). Beginning in week 23 (June 5-12), and through the remainder of the season, harvest during the 2006 NPSRF was considerably higher than historical 1991-2005 harvest levels. In addition, peak weekly harvest for the 2006 NPSRF was considerably higher, and occurred one week earlier than the NPSRF's historical 1991-2005 peak in week 26 (Fox et al. 1999).

2006 Harvest vs. Mean 1991-2005 Harvest

Figure 7. Comparison of 2006 NPSRF Weekly Harvest to 1991-2005 Mean Weekly Harvest.

Harvest by Fishing Location

The mean harvest by fishing location was 19,494 northern pikeminnow and ranged from 100,064 reward size northern pikeminnow in fishing location 01 (below Bonneville Dam) to 164 northern pikeminnow from fishing location 05 (McNary Dam to the mouth of the Snake River) (Figure 8). Harvest from fishing location 01 (the Columbia River below Bonneville Dam) accounted for 43% of total NPSRF harvest and was once again the highest producing area as it has been for each year since 1991. For the third year in a row, nearly 25% of total NPSRF harvest came from Bonneville Pool (fishing location 02) as was first documented during the 2004 NPSRF (Hone et al. 2004). The primary area of harvest for this fishing location is in the tailrace area of The Dalles Dam where NPSRF technicians continue to record larger than usual catches from anglers fishing exclusively in this area. We hypothesized that the increase in harvest of northern pikeminnow was a side benefit of the 2003 installation of a concrete water diversion wall in the tailrace of The Dalles Dam designed to increase survival of juvenile salmonids (Normandeau et al. 2005). The water diversion wall and modified spill patterns redirect migrating smolts to the northernmost spillways which also concentrates predatory northern pikeminnow into
the river habitat immediately below these spillways. Since the river habitat below these spillways is more accessible to NPSRF anglers and is also more conducive to effective pikeminnow angling, tremendous harvest totals have been achieved by NPSRF anglers from this relatively small, highly visible area in fishing location 02 .

2006 HARVEST BY FISH LOCATION

Figure 8. 2006 Northern Pikeminnow Sport-Reward Fishery Harvest by Fishing Location.*
*Fishing Location Codes for Columbia River; 1 = Below Bonneville Dam, 2 = Bonneville Reservoir, 3 = The Dalles Reservoir, 4 = John Day Reservoir, $5=$ McNary Dam to the mouth of the Snake River, $6=$ Mouth of the Snake River to Priest Rapids Dam. Fishing Location Codes for the Snake River; $7=$ Mouth of the Snake River to Ice Harbor Dam, $8=$ Ice Harbor Reservoir, $9=$ Lower Monumental Reservoir, $10=$ Little Goose Reservoir, $11=$ Lower Granite Dam to the mouth of the Clearwater River, $12=$ Mouth of the Clearwater River to Hell's Canyon Dam.

Harvest by Registration Station

The Dalles station was the top producing station for the third consecutive year where anglers harvested 45,742 northern pikeminnow equaling 20\% of the total NPSRF harvest. The station with the least harvest was Umatilla (in its first year of operation since 1994), where anglers harvested 1,570 northern pikeminnow (Figure 9). The average harvest per registration station was 13,760 reward size northern pikeminnow, down from 15,085 per station in 2005. It should be noted that one factor for below average harvest at some registration stations was that they were only open during limited hours. The Umatilla and Lyon's ferry stations for example, while only recording harvests of 1,570 and 1,604 northern pikeminnow respectively, were each open for only two hours per day and cost the NPSRF much less to operated than full time stations. The Cathlamet registration
station showed the largest increase in harvest improving from 8,173 northern pikeminnow in 2005 to 14,328 (a 75% increase) in 2006. The Giles French station showed the largest decline, dropping from 29,414 in 2005 to 15,778 in 2006 (a 54% decrease). As often happens in water years such as 2006 where there is a large amount of cold, off-colored water passing through the Federal Columbia River Power System (FCRPS) early in the season, many registration stations (especially those above Bonneville Dam) start off slowly and wind up with lower harvest than usual. On the other hand, stations below Bonneville Dam may also start off slowly, but then they often have higher than usual harvest late in the season and finish with better than average harvests.

Harvest By Registration Station

Figure 9. 2006 Northern Pikeminnow Sport-Reward Fishery Harvest by Registration Station. CAT-Cathlamet, WIL-Willow Grove, RAI-Rainier, KAL-Kalama, GLE-Gleason, CHI-Chinook, WASWashougal, BON-Bonneville Trailhead, CAS-Cascade Locks, DAL-TheDalles, GIL-Giles French, UMAUmatilla Marina, COL-Columbia Point, VER-Vernita, LYO-Lyon's Ferry, GRE-Greenbelt, BOY-Boyer Park.

Harvest by Species/ Incidental Catch

Returning anglers

In addition to northern pikeminnow, returning anglers participating in the 2006 NPSRF reported that they incidentally caught the salmonids listed in Table 1. Incidental salmonid catch by returning NPSRF anglers consisted mostly of juvenile hatchery steelhead and adult fin-clipped chinook. Anglers reported that all juvenile salmonids caught during the 2006 NPSRF were released. Technicians recorded any juvenile steelhead caught by NPSRF anglers (except those specifically reported as missing the adipose fin), as "wild". Harvested adult salmonids (hatchery fin-clipped chinook and steelhead with missing adipose fins) were caught incidentally during the 2006 NPSRF, but were only retained during legal salmonid fisheries. Instances where NPSRF anglers reported harvesting "trout" from the Snake River during a legal fishery are likely residualized hatchery steelhead smolts that are caught and kept by anglers, and misidentified as trout. Any NPSRF anglers who report illegally harvesting salmonids
during the exit interview (whether juvenile or adult salmonids), are immediately reported to the appropriate enforcement entity by WDFW technicians.

Table 1. Catch and Harvest of salmonids by Returning Anglers Targeting Northern Pikeminnow in 2006.
Salmon

Species	Caught	Harvest	Harvest Percent
Chinook (Adult)	48	23	47.92%
Chinook (Jack)	27	11	40.74%
Chinook (Juvenile)	29	0	0.00%
Coho (Juvenile)	5	0	0.00%
Cutthroat (unknown)	13	6	46.15%
Steelhead Adult (Hatchery)	14	8	57.14%
Steelhead Adult (Wild)	9	0	0.00%
Steelhead Juvenile (Hatchery)	36	0	0.00%
Steelhead Juvenile (Wild)	16	0	0.00%
Trout (Unknown)	22	3	13.64%

Other fish species incidentally caught by returning NPSRF anglers targeting northern pikeminnow were mostly peamouth, smallmouth bass, white sturgeon, and channel catfish as in all past NPSRF seasons (Table 2).

Table 2. Catch and Harvest of non-salmonids by Returning Anglers Targeting Northern Pikeminnow in 2006. Non-Salmonid

Species	Caught	Harvest	Harvest Percent
Northern Pikeminnow >228mm	233,962	233,924	99.98%
Peamouth	51,299	9,409	18.34%
Northern Pikeminnow <228mm	61,454	5,955	9.69%
Smallmouth Bass	20,455	1,973	9.65%
White Sturgeon	7,921	77	0.97%
Channel Catfish	8,571	1,954	22.80%
Sucker (unknown)	3,692	206	5.58%
Sculpin (unknown)	6,481	1,457	22.48%
Walleye	1,198	624	52.09%
American Shad	331	106	32.02%
Yellow Perch	1,830	395	21.58%
Starry Flounder	577	29	5.03%
Chiselmouth	421	108	25.65%
Carp	689	60	8.71%
Bullhead (unknown)	1,101	119	10.81%
Catfish (unknown)	285	108	37.89%
Crappie (unknown)	50	11	22.00%
Bluegill	319	44	13.79%
Redside Shiner	206	6	2.91%
Whitefish	35	5	14.29%
Largemouth Bass	19	2	10.53%
Pumpkinseed	43	1	2.33%
Sandroller	131	1	0.76%

[^2]We surveyed 2,045 non-returning anglers (19.94\% of all non-returning anglers) to record their catch and/or harvest of reward sized northern pikeminnow and salmonid species. Catch and harvest data for other fish species caught by non-returning anglers was last obtained during the 2005 NPSRF and were not recorded in 2006 since their harvest levels by NPSRF anglers has been historically very low (Bruce et al. 2005). We anticipate once again collecting full creel data from all surveyed non-returning anglers in 2010 to determine whether this trend has changed per NPMP protocol (Fox et al. 1999). Surveyed non-returning anglers targeting northern pikeminnow reported that they caught and/or harvested the salmonid species listed in column 1 of Table 3 during the 2006 NPSRF. A simple estimator was applied to the catch and harvest totals obtained from the surveyed anglers to obtain a total catch and harvest estimate for all non-returning anglers. Estimated total catch and harvest of northern pikeminnow and incidentally caught salmonid species for all non-returning anglers participating in the 2006 NPSRF is listed in columns 4 and 5 of Table 3.

Table 3. 2006 NPSRF Catch and Harvest for surveyed Non-returning Anglers and Estimated non-return totals.

Species	Caught	Harvested	\%Harvested	Estimated Total Catch	Estimated Total Harvest
Northern Pikeminnow > 228 mm	80	77	96.25\%	401	386
Steelhead (juvenile - Adipose absent)	3	0	0	15	0
Steelhead (juvenile - Adipose present)	3	0	0	15	0
Chinook (juvenile)	4	0	0	20	0
Chinook Adult	3	0	0	15	0
Coho (adult)	1	0	0	5	0

$\mathrm{N}=10,257 \quad \mathrm{n}=\mathbf{2 , 0 4 5}$

Fork Length Data

A total of 72,715 northern pikeminnow $\geq 200 \mathrm{~mm}$ (31.1% of all northern pikeminnow returned to registration stations) were sampled for fork length in 2006. Of these, 68,581 had a fork length $>209 \mathrm{~mm}$. Northern pikeminnow that are 228 mm TL (9 inches) have been estimated by NPSRF staff to have a fork length equaling 209 mm (Glaser at al. 2000). The mean fork length for northern pikeminnow $\geq 200 \mathrm{~mm}$ was 296.2 mm with a standard deviation of 73.5 mm . The length frequency distribution of northern pikeminnow $\geq 200 \mathrm{~mm}$ is presented in Figure 10.

Figure 10. Length frequency distribution of northern pikeminnow $\geq 200 \mathrm{~mm}$ FL sampled in 2006.

Angler Effort

The 2006 NPSRF recorded total effort of 31,693 angler days spent during the season, a drop of more than 10% from the effort totals of the previous two years (Figure 11). Peak effort occurred during the same week (25) as in 2005, and also coincided with this year's peak harvest. When total effort is divided into returning and non-returning angler days, 21,436 angler days (67.6%) were recorded by returning anglers, a slight increase from 2005 (66%), and consistent with the upward trend seen in recent years. In addition, 59\% of total effort, and 88% of returning angler effort (18,798 angler days), was attributed to successful anglers who harvested at least 1 northern pikeminnow in 2006.

Figure 11. Annual Northern Pikeminnow Sport-Reward Fishery Effort.

Effort by Week

Week Number

Figure 12. 2006 Weekly Northern Pikeminnow Sport-Reward Fishery Effort vs 2005 Weekly Effort.

Effort by Week

Mean weekly effort for the 2006 NPSRF was 1,321 angler days, down from 1,682 in 2005. The weekly effort totals for the first three weeks of the 2006 NPSRF began in the same pattern seen from previous years, although they were more than 500 angler days per week lower than the 2005 NPSRF. In week 21, worsening fishing conditions which included higher river flows and colder water temperatures, knocked effort back down to a level from which it never really recovered. Effort for the 2006 NPSRF finally peaked in week 25, but didn't reach 2005 levels until week 31 in late July (Figure 12). In fact, other than the final week of the regular season and the two week extension, 2006 NPSRF effort tracked well below mean 1991-2005 effort levels (Figure 13), continuing a pattern that the NPSRF has recorded since the program's inception.

2006 Effort vs. Mean 1991-2005 Effort

Figure 13. 2006 NPSRF Weekly Effort vs. Mean 1991-2005 Effort.

Effort by Fishing Location

Mean annual effort by fishing location for the 2006 NPSRF (returning anglers only) was 1,786 angler days compared to 1,699 angler days in 2005. Effort totals ranged from 9,603 angler days (45% of NPSRF total) below Bonneville Dam (fishing location 01) to only 21 angler days in fishing location 05 (McNary Dam to mouth of Snake River) (Figure 14). There was a small shift of effort from fishing locations 2 and 3 to fishing location 1, while effort totals in the remaining fishing locations were similar to 2005.

Figure 14. 2006 NPSRF Angler Effort by Fishing Location (returning anglers only).*
*Fishing Location Codes for Columbia River; $1=$ Below Bonneville Dam, 2 = Bonneville Reservoir, 3 = The Dalles Reservoir, $4=$ John Day Reservoir, $5=$ McNary Dam to the mouth of the Snake River, $6=$ Mouth of the Snake River to Priest Rapids Dam. Fishing Location Codes for the Snake River; $7=$ Mouth of the Snake River to Ice Harbor Dam, 8 = Ice Harbor Reservoir, 9 = Lower Monumental Reservoir, $10=$ Little Goose Reservoir, 11 = Lower Granite Dam to the mouth of the Clearwater River, 12 = Mouth of the Clearwater River to Hell's Canyon Dam.

Effort by Registration Station

Mean effort per registration station during the 2006 NPSRF was 1,864 angler days compared to 2,208 angler days in 2005. Effort totals ranged from 5,779 angler days at The Dalles station to 351 angler days at Lyons Ferry (Figure 15). The decline in effort was most apparent at the stations located above Bonneville Dam, while effort increased dramatically at the Cathlamet and Willow Grove stations.

Effort By Registration Station

Figure 15. 2006 Northern Pikeminnow Sport-Reward Fishery Angler Effort by Registration Station.
CAT-Cathlamet, WIL-Willow Grove, RAI-Rainier, KAL-Kalama, GLE-Gleason, CHI-Chinook, WAS-Washougal, BON-Bonneville Trailhead, CAS-Cascade Locks, DAL-TheDalles, GIL-Giles French, UMA-Umatilla, COLColumbia Point, VER-Vernita, LYO-Lyon's Ferry, GRE-Greenbelt, BOY-Boyer Park.

Catch Per Angler Day (CPUE)

The NPSRF recorded an overall catch per unit of effort (CPUE) of 7.38 northern pikeminnow harvested per angler day (returning + non-returning anglers) during the 2006 NPSRF. This catch rate was up from 2005, but down slightly from 7.59 recorded in 2004 (Figure 16). Overall CPUE has increased steadily from 1991-2005, and 2006 CPUE continues that trend. Returning angler CPUE during the 2006 NPSRF was 10.91 northern pikeminnow per angler day, down from 11.84 in 2005. Our most recent estimate of CPUE for non-returning anglers is 0.04 reward sized northern pikeminnow per angler day based on phone survey results.

CPUE -- Linear 1991-2006 Overall CPUE

Year

Figure 16. Annual CPUE Totals (returning + non-returning anglers) for the NPSRF 1991-2006.

CPUE by Week

Mean angler CPUE by week for the 2006 NPSRF was 7.76 fish per angler day compared to 6.83 in 2005. CPUE ranged from 4.02 in week 22 (May 29-June 4) to a peak of 11.45 in week 37 (September 11-17) (Figure 17). Highest catch rates occurred during the last four weeks of the season, and during the 2 week extension.

2006 CPUE By Week

Figure 17. 2006 Northern Pikeminnow Sport-Reward Fishery Angler CPUE by Week.

CPUE by Fishing Location

The highest harvest rates for the 2006 NPSRF (as indicated by CPUE) again came from fishing location 6 (primarily in the Hanford Reach) as was also the case in 2005 (Figure 18). The average CPUE by fishing location was 10.01 northern pikeminnow per angler day, while the lowest catch rates was 6.02 fish per day in fishing location 11 on the Snake River (Lower Granite Dam to the mouth of the Clearwater River) (Figure 18).

2006 CPUE By Fishing Location

Figure 18. 2006 Northern Pikeminnow Sport-Reward Fishery Angler CPUE by Fishing Location.*
*Fishing Location Codes for Columbia River; 1 = Below Bonneville Dam, 2 = Bonneville Reservoir, 3 = The Dalles Reservoir, $4=$ John Day Reservoir, $5=$ McNary Dam to the mouth of the Snake River, $6=$ Mouth of the Snake River to Priest Rapids Dam. Fishing Location Codes for the Snake River; $7=$ Mouth of the Snake River to Ice Harbor Dam, $8=$ Ice Harbor Reservoir, $9=$ Lower Monumental Reservoir, $10=$ Little Goose Reservoir, $11=$ Lower Granite Dam to the mouth of the Clearwater River, $12=$ Mouth of the Clearwater River to Hell's Canyon Dam.

CPUE by Registration Station

The registration Station with the highest CPUE during the 2006 NPSRF was once again the Vernita station with 12.13 northern pikeminnow per angler day, up from 12.06 in 2005 (Figure 19). The registration station with the lowest CPUE was the Umatilla station with 3.65 northern pikeminnow per angler day. The station average for CPUE was 6.94 . Fourteen of the seventeen registration stations had higher CPUE during the 2006 NPSRF than they did in 2005. The Gleason station again had the largest change in CPUE with an increase from 6.65 in 2005 to 10.30 in 2006.

2006 CPUE By Registration Station

Figure 19. 2006 Northern Pikeminnow Sport-Reward Fishery Angler CPUE by Registration Station. CAT-Cathlamet, WIL-Willow Grove, RAI-Rainier, KAL-Kalama, GLE-Gleason, CHI-Chinook, WAS-Washougal, BONBonneville Trailhead, CAS-Cascade Locks, DAL-TheDalles, GIL-Giles French, UMA-Umatilla Marina, COL-Columbia Point, VER-Vernita, LYO-Lyon's Ferry, GRE-Greenbelt, BOY-Boyer Park.

Angler Totals

There were 4,468 separate anglers who participated in the 2006 NPSRF, a decline of more than 900 participants from 2005. One thousand, nine hundred and fourteen of these anglers (43%) were classified as successful since they harvested at least one reward size northern pikeminnow during the 2006 season. The average successful angler harvested 122 northern pikeminnow during the 2006 NPSRF, although when we break down the 1,914 successful anglers by tier, most anglers ($83 \%=1,589$ anglers) harvested fewer than 100 northern pikeminnow and were classified as Tier 1 anglers (Figure 20). One hundred and seventy-eight anglers (9%) reached Tier 2 status by harvesting between 101 and 400 northern pikeminnow. Only eight percent of all NPSRF participants (147 anglers) reached the Tier 3 level by harvesting more than 400 northern pikeminnow in 2006. The number of anglers participating in the 2006 NPSRF was down at all three tier levels although the percentage of anglers at each tier level remained similar to previous years.

Percent of NPSRF Anglers by Tier

Tier 2 = 178
Anglers 9\%

Tier $3=147$
Anglers 8\%

Tier $1=1,589$
Anglers
83\%

Figure 20. 2006 NPSRF Anglers by tier (returning only) based on total \# of fish harvested.
While Tier 1 anglers made up more than 80% of all successful NPSRF participants in 2006, they only harvested an average of 15 fish per year accounting for only $10 \%(23,022$ northern pikeminnow) of total NPSRF harvest (Figure 21). Tier 2 anglers harvested an average of 190 fish per year, equaling 14% (33,725 northern pikeminnow) of total 2006 NPSRF harvest. Tier 3 anglers harvested an average of 1,205 fish per year equaling 76% (177,177 northern pikeminnow) of total 2006 NPSRF harvest. The harvest rates for both Tier 1 and Tier 3 anglers improved from 2005, while Tier 2 harvest rates declined.

Percent of NPSRF Harvest by Tier

Tier 3
76\%

Figure 21. 2006 NPSRF Harvest by Angler Tier (Tier 1 = < 100, Tier 2 =101-400, Tier 3 = > 400).

The average NPSRF participant expended more effort pursuing northern pikeminnow during in the 2006 season than in 2005 (7.1 angling days of effort in 2006 versus 6.6 days in 2005 (Figure 22). Tier 1 anglers spent the same average number of days fishing in the 2006 NPSRF (7 days) as in 2005. Tier 2 anglers averaged a day less than in 2005 (32 days in 2006 versus 33 days in 2005). Tier 3 anglers increased their average number of days spent fishing during the 2006 NPSRF to 78 days (up from 72 days in 2005). This continues the trend seen in recent seasons where the NPSRF anglers who harvest the most fish (Tier 3 anglers). also expend the most effort.

78Days
 Average Effort by Tier

Tier 1
Tier 2

- Tier 3

Figure 22. Average Effort of 2006 NPSRF Anglers by Tier (Tier $1=<100$, Tier $2=101-400$, Tier $3=>400$).
While overall angler CPUE for the 2006 NPSRF increased from 2005, CPUE did not increase for all anglers at all tier levels (Figure 23). CPUE for anglers at Tier 1 increased from 2.04 in 2005 to 2.16 in 2006, and CPUE for Tier 3 anglers increased from 15.23 in 2005 to 15.52 in 2006, but Tier 2 angler success (CPUE), actually declined from 6.07 in 2005 to 5.87 in 2006 (Figure 23).
15.52

CPUE by Tier

Tier 1 Tier 2

Tier 3

Figure 23. Average CPUE of 2006 NPSRF Anglers by Tier (Tier $1=<100$, Tier $2=101-400$, Tier $3=>400$).

The top angler for the 2006 NPSRF harvested 5,731 NPM worth an estimated \$48,484. This total included 8 spaghetti tagged northern pikeminnow and was 25 more fish than the number two angler harvested. It was also 931 more fish than last years top angler harvest of 4,800 northern pikeminnow. The CPUE for this year's top angler was 43.4 fish per day (down from the 2005 top angler's CPUE of 47.1), and he spent 132 angler days of effort during the 2006 season (versus 102 days by the top angler in 2005). By comparison, the angler who participated the most in 2006, fished 161 days and harvested 2,022 northern pikeminnow.

Tag Recovery

Returning anglers harvested 217 northern pikeminnow tagged by ODFW with external spaghetti tags during the 2006 NPSRF compared to 170 spaghetti tags in 2005 (Bruce et al., 2005). Of these tagged northern pikeminnow, 210 had also been PIT tagged by ODFW as a secondary mark. Technicians recovered an additional 99 northern pikeminnow with ODFW PIT tags, fin-clips, and/or wounds consistent with having lost an ODFW spaghetti tag. The recovered spaghetti and PIT tags, as well as the potential tag loss data was estimated by ODFW to equal a 14.6% exploitation rate for the 2006 NPSRF (Takata et al., 2006).

A total of 233,924 northern pikeminnow were individually scanned for the presence of PIT tags. This represents 100% of the total harvest of reward-size fish for the 2006 NPSRF (northern pikeminnow not qualifying for rewards were also scanned whenever possible). We recovered a total of 168 PIT tags from consumed smolts that had been ingested by northern pikeminnow harvested during the 2006 NPSRF. This is the same number of recoveries as during the 2005 NPSRF (Bruce et al., 2005). The 2006 NPSRF recorded the first two PIT tag recoveries of the season on May $5^{\text {th }}$ and continued to collect recoveries throughout the season until July $26^{\text {th }}$ (Figure 24). PIT tag recoveries of

2006 NPSRF Pit Tag Recoveries by Date

Figure 24. 2005 NPSRF PIT Tag Recoveries by Date.

Salmonid smolts ingested by northern pikeminnow occurred in a very unusual pattern during the 2006 NPSRF. There appeared to be two distinct "waves" with the first wave peaking near the peak recovery time noted in the past three NPSRF seasons (May 18 ${ }^{\text {th }}$). There was then a second peak in late June and early July (June $28^{\text {th }}$ and July $7^{\text {th }}$). The lack of recoveries between May $24^{\text {th }}$ and June $5^{\text {th }}$ coincides with a downturn in 2006 NPSRF effort, harvest, and CPUE resulting from higher water levels and colder water temperatures that were present during this time period. Recoveries of PIT tags ended near the end date for the recoveries from the 2004 seasons ($8 / 1 / 04$).

Pit tag recoveries by fishing location once again showed that northern pikeminnow harvested from the Bonneville Pool (fishing location 02) during the 2006 NPSRF, had ingested the largest number of salmonid smolts containing PIT tags (Figure 25). It is also of note that fishing location 10 (Little Goose Pool) also had a very large number of PIT tag recoveries from ingested smolts, nearly as many as from the Bonneville Pool. This data is contrary to earlier ODFW findings which indicate that northern pikeminnow predation on juvenile salmonids is greatest in lower Columbia River areas.

2006 NPSRF PIT Tag Recoveries

Figure 25. 2006 NPSRF ingested PIT Tag Recoveries by Fishing Location

All 168 PIT tag recoveries from ingested smolts were queried through the PTAGIS database and those queries yielded the following results. The mean fork length of smolts consumed by northern pikeminnow harvested during the 2006 NPSRF (based on FL at release from PTAGIS) was 89.47 mm . This was considerably smaller than the 2005 mean of 100.17 mm . Mean fork length for northern pikeminnow found with ingested PIT tags was 352.9 mm . Both means were smaller than the same means from 2005. Also, as in 2005, the mean fork length of northern pikeminnow found to have consumed PIT tagged smolts during the 2006 NPSRF was much larger than the overall mean fork length for all reward-size northern pikeminnow from the 2006 NPSRF (296.2 mm).

Species composition of PIT tagged smolts recovered from northern pikeminnow harvested in the 2006 NPSRF indicated that they were overwhelmingly chinook smolts, and primarily fall chinook smolts. 157 of the 168 ingested PIT tag recoveries (94%) were from chinook smolts, 5 (3\%) were from steelhead smolts, 3 (1.8%) were from coho smolts, 1 from a PIT tagged sockeye smolt (0.6%) with 1 PIT tag listed as "not given species" in PTAGIS accounting for the remaining 0.6%. PIT tag queries of PTAGIS indicated that 10 of the chinook smolts (6.37%) were of wild origin, 4 of the PIT tagged steelhead (80%) were of wild origin, and that the lone sockeye smolt was of wild origin.

Analysis of PIT tag recovery dates from the 2005 NPSRF continues to document northern pikeminnow predation on downstream migrating juvenile salmonids, primarily chinook. Our PIT tag recovery data also show that northern pikeminnow consume smolts (including Snake River fish) most heavily during the smolts peak migration month of May. Our 2006 data may also indicate that predation may be less during high flow periods such as occurred in late May and early June of 2006. Further data collection and analysis of PIT tag recoveries from juvenile salmonids consumed by northern pikeminnow harvested in the NPSRF may lead to a better understanding of northern pikeminnow predation on salmonid smolts and the factors affecting the vulnerability of smolts to predation while migrating through the Columbia River System.

SUMMARY

The 2006 NPSRF succeeded in reaching the NPMP's 10-20\% exploitation goal for the ninth consecutive year, achieving an estimated exploitation rate of 14.6%. Although harvest again declined from the previous year, it was still the fourth best harvest in NPMP history and consistent with higher NPSRF harvest levels of recent years. Angler CPUE increased again in 2006, following the upward trend seen since the NPSRF's inception. Despite difficult conditions early in the season, good late season harvest and a two week extension allowed the 2006 NPSRF to nearly match the 2005 harvest. Overall effort declined, although the most proficient anglers spent more time fishing and harvested more northern pikeminnow than in 2005. Despite less anglers and lower overall effort for the 2006 NPSRF, the effect on the NPMP's success was minimal as indicated by the NPSRF's estimated 17% exploitation rate.

The continuation of the higher reward levels begun in 2000 did tend to maintain angler interest in the NPSRF and did encourage anglers at two of the three tiers to increase their participation and harvest, but the decline in participants may become a problem if exploitation levels decline to the lower end of the $10-20 \%$ target range.

Detection of PIT tags from juvenile salmonids (retained in the gut of northern pikeminnow when they have been consumed), continues to yield interesting results and data on northern pikeminnow predation on outmigrating smolts. PIT tag recoveries remained at a level similar to previous years even though there were two distinct peaks during the 2006 NPSRF. Species composition of PIT tag recoveries from ingested juvenile salmonids showed that while the majority of predation was on hatchery fish, primarily fall chinook smolts, there were also significant numbers of wild chinook and steelhead being consumed by northern pikeminnow, along with another sockeye smolt. Use of PIT tags by ODFW as a secondary mark in spaghetti tagged northern pikeminnow continued to go smoothly during 2006 and we look forward more accurate estimates of tag loss and overall pikeminnow exploitation by the NPSRF. PIT tag recoveries continued to be monitored to identify and document angler fraud from northern pikeminnow tagged outside NPSRF boundaries.

RECOMMENDATIONS FOR THE 2007 SEASON

1.) Begin implementation of the 2007 NPSRF for all registration stations on May $14^{\text {th }}$ in response to expected above average river flow, and to improve overall NPSRF efficiency.
2.) Maintain emphasis by WDFW technicians on standardized application of angler pre-registration procedures as required by NPMP mandates.
3.) Review NPSRF Rules of participation as needed, adjusting to the dynamics of the fishery and fishery participants, in order to maintain NPSRF integrity.
4.) Develop angler education materials designed to recruit new anglers to NPSRF, and to improve the angling efficiency of current participants in order to achieve the NPMP's 10-20\% exploitation goal.
5.) Retain the option to extend the NPSRF season on a site-specific basis if warranted by high harvest, angler effort, and/or CPUE levels.
6.) Continue to scan all northern pikeminnow for PIT tags in order to recover tags and record data from juvenile salmonids ingested by northern pikeminnow, from northern pikeminnow tagged by ODFW as part of the biological evaluation of the NPMP, and as a way to deter fraud by identifying fish from outside NPSRF boundaries.
7.) Continue to develop additional measures to deter anglers from fraudulently submitting northern pikeminnow to the NPMP for payment.
8.) Survey 20% of non-returning anglers to record total non-returning angler catch of all salmonids to estimate total non-returning angler catch and harvest per NPMP protocol.
9.) Continue to investigate additional incentives for anglers to harvest northern pikeminnow from within NPSRF boundaries, i.e., spaghetti tagged fish.

REFERENCES

Bruce, R.C., E.C. Winther, J.D. Hone, and P.V. Dunlap. 2005. Implementation of the northern pikeminnow sport-reward fishery in the Columbia and Snake Rivers. In Development of a system-wide predator control program: stepwise implementation of a predator index, predator control fisheries, and evaluation plan in the Columbia River Basin (Northern Pikeminnow Management Program). 2005 Annual Report, project number 90-077. Contract DE-B179-90BP07084, Bonneville Power Administration, Portland, OR.

Burley, C.C., D.C. Klaybor, G.W. Short, and G.J. Hueckel. 1992. Evaluation of the northern squawfish sport-reward fishery in the Columbia and Snake Rivers. Report B in C.F. Willis and A.A. Nigro, editors. Development of a system-wide predator control program: stepwise implementation of a predator index, predator control fisheries, and evaluation plan in the Columbia River Basin (Northern Pikeminnow Management Program). 1991 Annual Report. Contract DE-B179 -90-BP07084, Bonneville Power Administration, Portland, Oregon.

Fox, L.G., J.J. Amren, B.G. Glaser, M.L. Wachtel, and E.C. Winther. 1999. Implementation of the northern pikeminnow sport-reward fishery in the Columbia and Snake Rivers. In Development of a system-wide predator control program: stepwise implementation of a predator index, predator control fisheries, and evaluation plan in the Columbia River Basin (Northern Pikeminnow Management Program). 1999 Annual Report, project number 90-007. Bonneville Power Administration, Portland, Oregon.

Friesen, T.A., and D.L. Ward 1999. Management of northern pikeminnow and implications for juvenile salmonid survival in lower Columbia and Snake Rivers. North American Journal of Fisheries Management 19:406-420.

Glaser, B.G., J.J. Amren, L.G. Fox., M.L. Wachtel, and E.C. Winther. 2000. Implementation of the northern pikeminnow sport-reward fishery in the Columbia and Snake Rivers. In Development of a system-wide predator control program: stepwise implementation of a predator index, predator control fisheries, and evaluation plan in the Columbia River Basin (Northern Pikeminnow Management Program). 2000 Annual Report, project number 90-077. Bonneville Power Administration, Portland, Oregon.

Hankin, D.G., and J. Richards. 2000. The northern pikeminnow management program: an independent review of program justification, performance, and cost effectiveness. Report to the Pacific Northwest Electric Power and Conservation Planning Council, Portland, Oregon.

Hisata, J.S., M.R. Peterson, D.R. Gilliland, E.C. Winther, S.S. Smith, and J. Saurez-Pena. 1995. Implementation of the northern squawfish sport-reward fishery in the Columbia and Snake Rivers. Report A in Development of a system-wide predator control program: stepwise implementation of a predator index, predator control fisheries, and evaluation plan in the Columbia River Basin (Northern Squawfish Management Program). 1995 Annual Report, project number 90-077. Contract DE-B179-90BP07084, Bonneville

Power Administration, Portland, Oregon.
Hone, J.D., R. Bruce, E.C. Winther, and J. Memarian. 2003. Implementation of the northern pikeminnow sport-reward fishery in the Columbia and Snake Rivers. In Development of a system-wide predator control program: stepwise implementation of a predator index, predator control fisheries, and evaluation plan in the Columbia River Basin (Northern Pikeminnow Management Program). 2003 Annual Report, project number 90-077. Contract DE-B179-90BP07084, Bonneville Power Administration, Portland, Oregon.

Hone, J.D., R. Bruce, J. Memarian, and E.C. Winther. 2004. Implementation of the northern pikeminnow sport-reward fishery in the Columbia and Snake Rivers. In Development of a system-wide predator control program: stepwise implementation of a predator index, predator control fisheries, and evaluation plan in the Columbia River Basin (Northern Pikeminnow Management Program). 2004 Annual Report, project number 90-077. Contract DE-B179-90BP07084, Bonneville Power Administration, Portland, Oregon.

Klaybor, D.C., C.C. Burley, S.S. Smith, E.N. Mattson, E.C. Winther, P. E. DuCommun, H.R. Bartlett, and S,L. Kelsey. 1993. Evaluation of the northern squawfish sport-reward fishery in the Columbia and Snake Rivers. Report B in C.F. Willis and D. L. Ward, editors. Development of a system-wide predator control program: stepwise implementation of a predator index, predator control fisheries, and evaluation plan in the Columbia River Basin. 1993 Annual Report, Volume 1. Contract DE-B179-90BP07084, Bonneville Power Administration, Portland, Oregon.

Nelson, J. S. and five co-authors. 1998. Recommended changes in common fish names: pikeminnow to replace squawfish. Fisheries 23(9):37.

Normandeau A, J.R. Skalski, and I Mid Columbia Consulting. 2005. Evaluation of the spillway diversion wall on survival and injury of juvenile Chinook salmon at The Dalles Dam, spring 2004. Report prepared for the U.S. Army Corps of Engineers, Portland District, Portland, OR.

Northwest Power Planning Council. 1987a. Columbia River Basin Fish and Wildlife Program. Northwest Power Planning Council. Portland, Oregon.

Rieman, B.E., R. C. Beamssderfer, S. Vigg, and T.P. Poe. 1991. Predation by resident fish on juvenile salmonids in a mainstem Columbia reservoir: Part IV. Estimated total loss and mortality of juvenile salmonids to northern squawfish, walleye, and smallmouth bass. T. P. Poe, and B.E. Rieman editors. Resident fish predation on juvenile salmonids in John Day Reservoir, 1983-1986. Final Report (Contracts DE-A179-82 BP34796 and DE-A179-82BP35097) to Bonneville Power Administration, Portland, Oregon.

Rieman, B.E., and R.C. Beamesderfer. 1990. Dynamics of a northern squawfish population and the potential to reduce predation on juvenile salmonids in a Columbia River reservoir. North American Journal of Fisheries Management 10:228-241.

Smith, S.E., D.R. Gilliland, E.C. Winther, M.R. Petersen, E.N. Mattson, S.R. Kelsey, J. SuarezPena, and J. Hisata. 1994. (Implementation of the northern squawfish sport-reward fishery in the Columbia and Snake Rivers. In Development of a system-wide predator
control program: Evaluation of the northern squawfish sport-reward fishery in the Columbia and Snake Rivers. Washington Department of Fish and Wildlife, Contract number DE-B179-90BP07084. 1994 Annual Report to the Bonneville Power Administration, Portland, Oregon.

Takata, H.K., M.J. Reesman, G.E. Reed, L.L. Layng, and T.A. Jones. 2006. Indexing and fisheries evaluation. Report C in Development of a system-wide predator control program: stepwise implementation of a predator index, predator control fisheries, and evaluation plan in the Columbia River Basin (Northern Pikeminnow Management Program. 2001 Annual Report, project number 90-077. Contract DE-B179-90-BP07084, Bonneville Power Administration, Portland, Oregon.

Vigg, S. and C.C. Burley. 1989. Developing a predation index and evaluating ways to reduce salmonid losses to predation in the Columbia Basin. Report A in A.A. Nigro, editor. Developing a predation index and evaluating ways to reduce losses to predation in the Columbia Basin. Oregon Department of Fish and Wildlife, Contract Number DE-A17988BP92122. Annual Report to Bonneville Power Administration, Portland, Oregon.

Vigg, S., C.C. Burley, D.L. Ward, C. Mallette, S. Smith, and M. Zimmerman. 1990. Development of a system-wide predator control program: Stepwise implementation of a predation index, predator control fisheries, and evaluation plan in the Columbia River Basin. Oregon Department of Fish and Wildlife, Contact number DE-B179-90BP07084. 1990 Annual Report to the Bonneville Power Administration, Portland, Oregon.

Winther, E.C., J.S. Hisata, M.R. Peterson, M.A. Hagen and R. C. Welling. 1996. Implementation of the northern squawfish sport-reward fishery in the Columbia and Snake Rivers. In Development of a system-wide predator control program: stepwise implementation of a predator index, predator control fisheries, and evaluation plan in the Columbia River Basin (Northern Squawfish Management Program). 1996 Annual Report, project number 90-077. Contract DE-B179-90BP07084, Bonneville Power Administration, Portland, Oregon.

Winther, E.C., L.G. Fox, M.L. Wachtel, and B.G. Glaser. 2001. Implementation of the northern pikeminnow sport-reward fishery in the Columbia and Snake Rivers. In Development of a system-wide predator control program: stepwise implementation of a predator index, predator control fisheries, and evaluation plan in the Columbia River Basin (Northern Pikeminnow Management Program). 2001 Annual Report, project number 90-077. Contract DE-B179-90-BP07084, Bonneville Power Administration, Portland, Oregon.

Winther, E.C., L.G. Fox, J.D. Hone, and J.A. Memarian. 2002. Implementation of the northern pikeminnow sport-reward fishery in the Columbia and Snake Rivers. In Development of a system-wide predator control program: stepwise implementation of a predator index, predator control fisheries, and evaluation plan in the Columbia River Basin (Northern Pikeminnow Management Program). 2002 Annual Report, project number 90-077. Contract DE-B179-90BP07084, Bonneville Power Administration, Portland, Oregon.

Report B

Northern Pikeminnow Sport Reward Payments - 2006

Prepared by
Russell G. Porter

April, 2007

INTRODUCTION

The Northern Pikeminnow Predator Control Program was administered by PSMFC in 2006. The program is a joint effort between the fishery agencies of the states of Washington and Oregon, and the Pacific States Marine Fisheries Commission (PSMFC). Washington ran the sport-reward registration/creel check stations throughout the river and handled all fish checked in to the program. Oregon provided fish tagging services, population studies, food habit and reproductive studies, as well as exploitation rate estimates. PSMFC provided technical administration and fiscal and contractual oversight for all segments of the Program and processed all reward vouchers for the sport-reward anglers.

CATCH AND PAYMENTS

In 2006 a total of 239,879 fish were harvested in the sport-reward fishery. Of this total 216 were tagged fish and 239,663 were untagged. Vouchers for 231,626 of the untagged fish were submitted for payment totaling rewards of $\$ 1,460,722$. Rewards were paid at $\$ 4$ for the first 100 fish caught during the season, $\$ 5$ for fish in the 101-400 range, and $\$ 8$ for all fish caught by an angler above 400 fish. PSMFC maintained an accounting system during the season to determine the appropriate reward amount due each angler for particular fish. A total of 1,469 anglers who registered were successful in catching one or more fish in 2006. The 2006 season ran from May 1, 2006 through October 15, 2006.

TAGGED FISH PAYMENTS

A total of 216 tagged fish were caught. Anglers were issued a special tagged fish voucher for all tagged fish brought to the registration station. The tag voucher was then sent in with the tag for verification and payment of the special $\$ 500$ tagged fish reward. All 216 tagged vouchers were submitted for payment, resulting in tag reward payments of $\$ 108,000$ in addition to the regular reward payments above.

ACCOUNTING

Payments for the season of regular vouchers and tagged fish, totaled $\$ 1,568,722$. All IRS Form 1099 Misc. statements were sent to the qualifying anglers for tax purposes in the third week of January, 2007. Appropriate reports and copies were provided to the IRS by the end of February, 2007.

A summary of the catch and rewards paid is provided in Table 1. For further information contact Russell Porter, PSMFC, Field Programs Administrator at (503) 595-3100 or email at: russell_porter@psmfc.org.

Table 1. 2006 SPORT REWARD PAYMENTS SUMMARY

The following is a summary of the vouchers received and paid as of December 20, 2006

	Fish	$\$$ Paid
Fish paid @ tier $1(\$ 4.00$ each $):$	53,151	$\$ 212,604$
Fish paid @ tier $2(\$ 5.00$ each $)$	59,894	$\$ 299,470$
Fish paid @ tier $3(\$ 8.00$ each $)$	118,581	$\$ 948,648$
Tags paid (@ \$500.00 each):	216	$\$ 108,000$
Total:	$\mathbf{2 3 1 , 8 4 2}$	$\mathbf{\$ 1 , 5 6 8 , 7 2 2}$

Anglers @ tier 1 1,146
Anglers @ tier 2176
Anglers with 10 fish or less: 658
$\begin{array}{ll}\text { Anglers @ tier } 3 & \frac{147}{1,469}\end{array}$
Anglers with 2 fish or less: 238
Number of separate anglers 1,469

Top Twenty Anglers * TIER 1 TIER 2 TIER 3 TAGS | TOTAL |
| :---: |
| FISH | BALANCE

1. VASILCHUK, DAVID R	100	300	5,306	8	5,714	$\$ 48,348$
2. ZAREMSKIY, NIKOLAY N	100	299	5,307	2	5,708	$\$ 45,351$
3. PAPST,THOMAS H	100	300	4,436	10	4,846	$\$ 42,388$
4. VASILCHUK, IVAN R	100	300	3,696	7	4,103	$\$ 34,968$
5. HISTAND,TIMOTHY L	100	300	3,161	1	3,562	$\$ 27,688$
6. ORLOVSKIY, VIKTOR M	100	300	3,002	2	3,404	$\$ 26,916$
7. HUNTER, KENNETH W	100	300	2,618	0	3,018	$\$ 22,844$
8. BROWN, JOHN G	100	300	2,582	1	2,983	$\$ 23,056$
9. JONES, JOHN A	100	300	2,482	2	2,884	$\$ 22,756$
10. WILLIAMS, EDWARD R	100	300	2,438	0	2,838	$\$ 21,404$
11. LEVCHENKOV, VASILIY G	100	300	2,073	1	2,474	$\$ 18,984$
12. CALDWELL,TIMOTHY E	100	300	2,049	3	2,452	$\$ 19,792$
13. WEBER, STEVEN A	100	300	1,974	2	2,376	$\$ 18,692$
14. HOLSCHER,ERIC G	100	300	1,776	0	2,176	$\$ 16,108$
15. KEILWITZ,DANIEL D	100	300	1,773	0	2,173	$\$ 16,084$
16. GOROV, VADYM V	100	298	1,768	2	2,168	$\$ 17,034$
17. MILLER, EARL D	100	300	1,765	1	2,166	$\$ 16,520$
18. GEIGER, DANIEL J	100	300	1,700	3	2,103	$\$ 17,000$
19. WAHL, PETER F	100	300	1,685	1	2,086	$\$ 15,880$
20. ZAGORODNY, IOSIF P	100	300	1,627	1	2,028	$\$ 15,416$
* (by total fish caught)	2,000	5,997	53,218	47	61,262	$\$ 487,229$

Report C

Development of a System-wide Predator Control Program: Indexing and Fisheries Evaluation

Prepared by

Howard K. Takata
Martyne J. Reesman George E. Reed
Les D. Layng
Tucker A. Jones

Oregon Department of Fish and Wildlife
Columbia River Investigations
17330 S.E. Evelyn Street
Clackamas, Oregon 97015
Funded by
U. S. Department of Energy

Bonneville Power Administration
Division of Fish and Wildlife
Portland, Oregon 97208-3621
Project No. 1990-077-00
Contract No. 26763

March 2007

Summary

The Northern Pikeminnow Management Program (NPMP), a fishery aimed at reducing predation on juvenile salmonids by northern pikeminnow Ptychocheilus oregonensis, was implemented for the $16^{\text {th }}$ consecutive year in the mainstem Columbia and Snake rivers. We report on (1) northern pikeminnow exploitation rates, predation estimates, spaghetti tag loss rates, and age validation work; (2) population parameters of northern pikeminnow, smallmouth bass Micropterus dolomieu, and walleye Sander vitreus in The Dalles and John Day reservoirs, and (3) possible compensatory responses by these species.

To evaluate exploitation, we tagged and released 1,330 northern pikeminnow \geq 200 mm fork length (FL) throughout the lower Columbia and Snake rivers in 2006, the most since 1996. Of these, 881 were $\geq 250 \mathrm{~mm}$ FL. System-wide exploitation of northern pikeminnow $\geq 200 \mathrm{~mm}$ FL by the sport-reward fishery was 14.6% (95% confidence bounds $10.5 \%-18.6 \%$), which incorporated a tag loss estimate of 9.9%. Additional tag recaptures from the dam angling fishery increased total system-wide exploitation to 14.8%. Sport-reward exploitation of fish $\geq 250 \mathrm{~mm}$ FL was 17.1% ($11.3 \%-22.8 \%$), the third highest exploitation rate since program inception. Based on sport-reward exploitation rates and using our current model, we estimated that 2006 predation levels were 25% (14-44\%) lower than pre-program levels.

Continuing our age validation study, we aged 279 scale-operculum matched pairs from northern pikeminnow in 2006. Agreement within one year on ages assigned by the two readers was not significantly different for scales (86.7%; 95% confidence bounds $82.8-90.7 \%$) and opercula (83.5%; 95% confidence bounds $79.2-87.9 \%$). We examined 284 operculum samples from northern pikeminnow recaptured by anglers; detectable oxytetracycline (OTC) marks were found in 93% of the samples. We noted the correct number of annuli after the OTC mark 75.7% (95% confidence bounds $70.5-80.9 \%$) of the time; this percentage was significantly higher for good quality marks ($P<0.05$). Beginning at 8-9 years of age, northern pikeminnow opercula were consistently assigned older ages than their corresponding scales.

We continued biological indexing in the lower Columbia River as part of our predator community evaluation. In 2006, northern pikeminnow abundance indices in The Dalles and John Day reservoirs were among the lowest observed to date. The consumption index value for the John Day Dam tailrace was the highest to date, while consumption indices in other areas were generally low. Predation indices were similar to or lower than previous years. Although 66% of northern pikeminnow stomachs were empty, all identifiable fish remains consisted of juvenile salmonids. Relative weight of northern pikeminnow in The Dalles Reservoir has gradually increased over the last 10 years. This type of change could be a potential compensatory response to the NPMP. Year-class analysis indicated that northern pikeminnow in John Day Reservoir may be getting younger, with the proportion of the population consisting of age-3 fish increasing substantially in the past decade. Although this is a desired outcome of the removal program, whether it can be attributed to the NPMP is unclear.

Smallmouth bass relative densities in The Dalles and John Day reservoirs increased during the past decade while northern pikeminnow abundance declined. Relative weights for smallmouth bass also increased during the same time. Although smallmouth bass proportional stock density (PSD) in The Dalles Reservoir showed that the population there appears to be balanced, PSD in John Day Reservoir indicated a potentially unstable population with higher than optimal recruitment to the stock. Smallmouth bass consumption and predation indices were generally stable, with salmonid predation highest in the middle of John Day Reservoir. Juvenile salmonids comprised $5.4-13.6 \%$ of the fish identified in smallmouth bass stomachs, with Cottus spp. most commonly consumed.

Walleye abundance was low compared to other predators such as northern pikeminnow and smallmouth bass. The age distribution of walleye has remained relatively stable since 1992, and year-to-year relative weights exhibited little variability. Walleye PSD in John Day Reservoir has decreased in recent years to a level indicating a balanced population. This may be due to improved recruitment of stock size fish. Compared to both northern pikeminnow and smallmouth bass, walleye stomachs had a higher proportion of juvenile salmonids.

Although there are some signs of possible compensation by predators to the sustained removal of northern pikeminnow by the NPMP, the indicators are localized, and other density- independent factors can have similar effects. At this time, there does not appear to be a system-wide predator response to the removal program; however, continued monitoring is necessary to assess potential long-term impacts of localized changes.

Introduction

The Columbia and Snake rivers once supported large numbers of anadromous salmonids Oncorhynchus spp. Declines in adult returns have been attributed to many factors, including habitat degradation and overexploitation (Nehlsen et al. 1991; Wismar et al. 1994), hydroelectric and flood control activities during the 1970s (Raymond 1988), and predation (Rieman et al. 1991; Collis et al. 2002). The mean annual loss of juvenile salmonids to predators can be equivalent to mortality associated with dam passage (Rieman et al. 1991), which in the past could approach 30% at a single dam (Long and Ossiander 1974). The Northern Pikeminnow Management Program (NPMP) is a set of targeted fisheries aimed at reducing predation on juvenile salmonids by northern pikeminnow Ptychocheilus oregonensis in the lower Columbia and Snake rivers (Rieman and Beamesderfer 1990; Beamesderfer et al. 1996). The Oregon Department of Fish and Wildlife (ODFW) established baseline levels of predation and northern pikeminnow population characteristics prior to the implementation of the northern pikeminnow fisheries. Abundance, consumption, and predation were estimated in Columbia River reservoirs in 1990 and 1993, Snake River reservoirs in 1991, and the unimpounded lower Columbia River downstream from Bonneville Dam in 1992 (Ward et al. 1995). We sampled northern pikeminnow in areas where adequate sample sizes allowed comparisons among years (Zimmerman and Ward 1999; Zimmerman et al. 2000; Jones et al. 2005) (Appendix Table A-1). This report describes our activities and findings for 2006, and wherever possible, evaluates changes from previous years.

Our objectives in 2006 were to (1) evaluate northern pikeminnow exploitation, potential predation, tag loss, and age validation; (2) define population parameters of northern pikeminnow, smallmouth bass Micropterus dolomieu, and walleye Sander vitreus in The Dalles and John Day reservoirs, and (3) look for possible compensatory responses by these species.

Objective (1) was modified in 2006 to include evaluation of a dam-angling fishery at Bonneville and The Dalles dams. The tag loss and age validation portions of objective (1) were implemented in 2000 based on recommendations from an independent review of the NPMP (Hankin and Richards 2000). Objectives (2) and (3) are a continuation of population monitoring studies conducted in 1990-1996, 1999, and 2004-2005.

Methods

Fishery Evaluation, Predation Estimates, and Tag Loss

Field Procedures.-The Washington Department of Fish and Wildlife (WDFW) administered the sport-reward fishery from 1 May 2006 (15 May 2006 upstream of John

Day Dam) to 15 October 2006 throughout the lower Columbia and Snake rivers. Participating anglers received payment for northern pikeminnow $\geq 230 \mathrm{~mm}$ (9 inches) total length (TL). This size limit is approximately equivalent to 200 mm fork length (FL). The payment schedule for 2006 consisted of three tiers: $\$ 4$ per fish for "Tier 1" anglers (<100 fish caught), $\$ 5$ per fish for "Tier 2" anglers (100-400 fish caught), and \$8 per fish for "Tier 3" anglers (>400 fish caught) (WDFW 2006).
Rewards for spaghetti-tagged fish remained at $\$ 500$.
The U.S. Department of Agriculture (USDA) Wildlife Services Division conducted dam-angling fisheries at Bonneville and The Dalles dams from 1 May to 6 August 2006. This was a removal fishery designed to further decrease predation in the immediate tailrace area of the dams. To collect biological data from northern pikeminnow caught in this fishery, we sub-sampled the dam-angling catch on several days during May and June.

We tagged and released northern pikeminnow $\geq 200 \mathrm{~mm}$ FL with uniquely numbered spaghetti tags to estimate exploitation rates for the sport-reward and damangling fisheries. To evaluate spaghetti tag retention, we also injected a passive integrated transponder (PIT) tag into the dorsal sinus of all spaghetti-tagged fish. We used electrofishing boats to collect northern pikeminnow from 3 April to 22 June 2006 (detailed methods are given in Friesen and Ward 1999). Though we attempted to allocate equal sampling effort in all river kilometers (rkm), some deviation was necessary due to sampling logistics and swift river flow in the Hanford Reach of the Columbia River and in the Snake River near Asotin, Washington. We sampled in the Columbia River from rkm 76 (near Clatskanie, Oregon) upstream to rkm 639 (Priest Rapids Dam) and in the Snake River from rkm 112 (Little Goose Dam) to rkm 248 (Figure 1).

We completed northern pikeminnow tagging below Bonneville Dam and in Bonneville Reservoir before the start of the sport-reward fishery. Tagging operations ran concurrently with the fishery in The Dalles, John Day, McNary, Little Goose, and Lower Granite reservoirs.

Data Analysis.-We used mark-and-recapture data to compare exploitation rates of northern pikeminnow $\geq 200 \mathrm{~mm}$ FL, 200-249 mm FL, and $\geq 250 \mathrm{~mm}$ FL among reservoirs. In areas where tagging was completed prior to the start of the fishery, we used the simple Peterson method (Ricker 1975) to calculate annual exploitation rates. This is given by the equation

$$
\mathrm{u}=\mathrm{R} / \mathrm{M},
$$

where
$\mathrm{u}=$ annual exploitation estimate,
$\mathrm{M}=$ the number of fish that are tagged in a season, and
$\mathrm{R}=$ the number of tagged fish that are recaptured in a season.
We calculated 95% confidence intervals for exploitation estimates using the formula

$$
\left(\mathrm{R} \pm \mathrm{z}^{*} \mathrm{R}^{0.5}\right) / \mathrm{M}
$$

where
z = the multiplier from the standard normal distribution,
$\mathrm{M}=$ the number of fish that are tagged in a season, and
$\mathrm{R}=$ the number of tagged fish that are recaptured in a season (Styer 2003).

Figure 1.-The lower Columbia and Snake rivers. Northern pikeminnow were tagged from river kilometer (rkm) 76 to Priest Rapids Dam in the lower Columbia River and from Little Goose Dam forebay to rkm 248 on the Snake River. Biological indexing was conducted in The Dalles Reservoir (The Dalles Dam forebay, mid-reservoir, and John Day Dam tailrace) and in John Day Reservoir (John Day Dam forebay, mid-reservoir, and McNary Dam tailrace) during the spring and summer of 2006.

We calculated multi-year exploitation rates in 2006 from 2003 - 2006 PIT tag return data for the area below Bonneville Dam and Bonneville Reservoir. We used a variable survival method (Everhart and Youngs 1981) to calculate multi-year exploitation rates for northern pikeminnow $\geq 200 \mathrm{~mm}$ FL. This is given by the equation

$$
\mathrm{f}_{\mathrm{i}}=\mathrm{R}_{\mathrm{i}} / \mathrm{M}_{\mathrm{i}} * \mathrm{C}_{\mathrm{i}} / \mathrm{T}_{\mathrm{i}},
$$

where
$\mathrm{f}_{\mathrm{i}}=$ the minimum estimate of exploitation in year i ,
$M_{i}=$ the number of fish that are tagged in year i,
$R_{i}=$ the total number of recaptures from a particular tagging release,
$\mathrm{C}_{\mathrm{i}}=$ the total number of fish that are recaptured in any particular sample year,
and
$\mathrm{T}_{\mathrm{i}}=\mathrm{T}_{\mathrm{i}-1}+\mathrm{R}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}-1}$ where $\mathrm{T}_{1} \equiv \mathrm{R}_{1}$.
We used a multiple sample approach to compute exploitation rates in areas where tagging and fishing occurred concurrently (Styer 2003). Weekly estimates of exploitation were calculated by dividing the number of tagged northern pikeminnow recovered by the number of tagged fish at-large. We then summed the weekly exploitation rates to yield total exploitation rates for the season (Beamesderfer et al. 1987).

We calculated 95% confidence intervals for exploitation estimates obtained by the multiple sample method by using the formula

$$
\mathrm{u} \pm \mathrm{t}\left(\mathrm{k}^{*} \mathrm{~s}\right)^{0.5}
$$

where
$\mathrm{u}=$ the annual exploitation estimate,
$\mathrm{t}=$ the multiplier from the Student's t -distribution,
$\mathrm{k}=$ the number of weeks in the fishing season, and
$\mathrm{s}=$ the standard deviation of the weekly exploitation estimates (Styer 2003).
We did not calculate exploitation rates for areas where the number of recaptures was less than four (Styer 2003), and exploitation estimates from previous years where fewer than four tags were recovered were excluded from this report. We adjusted exploitation estimates and confidence intervals for tag loss. An annual tag loss estimate was calculated using the formula

$$
\mathrm{L}=[\mathrm{m} /(\mathrm{m}+\mathrm{r})] * 100,
$$

where
$\mathrm{L}=$ tag loss rate,
$\mathrm{m}=$ the number of northern pikeminnow recaptured with a secondary mark (PIT
tag) and no spaghetti tag, and
r $=$ the number of northern pikeminnow recaptured with year 2006 spaghetti tags intact.

We used the model of Friesen and Ward (1999) to estimate predation on juvenile salmonids relative to predation prior to implementation of the NPMP. The model incorporates age-specific exploitation rates on northern pikeminnow and resulting changes in age structure to estimate changes in predation. We used a 10-year "average" age structure (based on catch curves) for a pre-exploitation base, and assumed constant recruitment. Age-specific consumption was incorporated; however, potential changes in consumption, growth, and fecundity due to removals were not considered likely (Knutsen and Ward 1999). The model therefore estimates changes in potential predation related directly to removals, allowing us to estimate the effects of removals if all variables except
exploitation were held constant. We estimated the potential relative predation in 2006 based on observed exploitation rates and the eventual minimum potential predation assuming continuing exploitation at mean 1995 - 2006 levels.

To explore the effect of river flow on northern pikeminnow harvest, we plotted the arc sin transformed annual (1995-2006) system-wide sport-reward exploitation rate for fish $\geq 250 \mathrm{~mm}$ FL versus mean Columbia River stage for the period May - September (May - October in 2006) below Bonneville Dam (site number 14128870; USGS 2006). Additionally, because the reward structure of the sport-reward fishery has been modified to increase effort and catch in recent years, we conducted a multiple linear regression of two reward structure variables (pay at the Tier 3 level and the number of Tier 3 anglers) and system-wide exploitation rates for northern pikeminnow $\geq 250 \mathrm{~mm}$ FL during 20002006.

Age Validation

Field Procedures.-To validate ages of northern pikeminnow, WDFW collected scale and operculum samples from tagged northern pikeminnow recaptured in the 2006 sportreward fishery. Since 2002, all northern pikeminnow tagged each year have been injected with a solution of oxytetracycline (OTC) at a dosage of 50 mg OTC per kg fish weight (McFarlane and Beamish 1987) to leave a fluorescent mark on aging structures.

Laboratory Procedures.-We aged scale samples from all northern pikeminnow recaptured with an intact spaghetti and/or PIT tag, unless scales were regenerated. Scales were cleaned, mounted on cards, and pressed onto acetate sheets for viewing on a microfiche reader. Parker et al. (1995) described methods of age determination for northern pikeminnow. Two readers independently assigned ages to the scale samples. When the readers disagreed on an age, they reviewed the scale in question together until a final age was agreed upon.

We placed opercula, still in individual sample envelopes, into a water bath and microwaved them on high for 5-6 minutes (per group of 10 samples) to soften tissues and skin covering the opercular bone. We then removed the tissue using a pair of tweezers and a toothbrush. The thickened ridge radiating from the focus on the concave side of each operculum was ground down with a Dremel Tool (Robert Bosch Tool Corporation, Racine, Wisconsin) to enhance viewing of potential annuli near the focus (Scoppettone 1988). Readers used imaging software (Motic Instruments, Incorporated, British Columbia, Canada) to examine each operculum on a computer monitor. A digital video microscope projected the image at 10x magnification using light transmitted from either above or below the operculum, whichever gave the best view of the annuli. One experienced reader and one novice reader aged opercula and the corresponding scale samples in 2006. We used the same technique to resolve operculum age differences as we had for scales. The experienced reader also inspected opercula from each fish tagged between 2002 and 2006 in a dark room under a dissecting microscope, using a desk lamp fitted with a black light to fluoresce potential OTC marks.

Data Analysis.-We continued the age validation study initiated in 2000 (Takata and Ward 2001); evaluating between-reader variation in ages assigned to scales and opercula from northern pikeminnow. Aging discrepancies were calculated as

$$
\mathrm{D}=\mathrm{A}_{\mathrm{i}}-\mathrm{A}_{\mathrm{j}},
$$

where
$\mathrm{D}=$ age discrepancy,
$A_{i}=$ age assigned to a scale or operculum by reader i, and
$A_{j}=$ age assigned to a scale or operculum by reader j.
This analysis allowed us to measure both magnitude and directionality of the discrepancy (e.g.

- 2 years, -1 year, 0 years, +1 year, etc.), and enabled us to determine if differences were systematic. We then calculated the percentage of samples in each discrepancy category as a measure of between-reader agreement. We analyzed differences between scale and operculum reader discrepancies by looking at the differences in percentages of ± 1 year agreement. We determined reader agreement to be significantly different when 95% confidence intervals did not overlap.

To further evaluate the potential use of opercula for aging northern pikeminnow, we compared the ages assigned to opercula and scales collected from the same fish. We calculated discrepancies using the formula

$$
\mathrm{D}=\mathrm{A}_{\mathrm{o}}-\mathrm{A}_{\mathrm{S}},
$$

where
D = age discrepancy,
$\mathrm{A}_{\mathrm{o}}=$ age assigned to the operculum, and
$\mathrm{A}_{\mathrm{S}}=$ age assigned to the scale.
We used t-tests to analyze operculum-scale age discrepancies.
An experienced reader checked opercula from northern pikeminnow tagged between 2002 and 2006 for the presence of OTC marks, and scored the quality of discernable marks. An easily observed and relatively wide fluorescent band along all or most of the operculum's edge was considered a "good" mark. If the fluorescent band was thin or patchy but went around one-half or more of the operculum's edge, the mark was considered "fair." If the fluorescent marking covered less than half of the operculum's edge it was considered a "poor" mark. In addition, the reader noted any opercula without any visible mark as having "No mark". We also continued efforts to validate our ability to detect operculum annuli; counting any visible annuli after the OTC mark. We used Chi-square tests to analyze OTC mark quality, and non-overlapping 95% confidence intervals indicated significant differences in correctly identified annuli by year and mark quality.

Biological Evaluation

Field Procedures.-We used standardized electrofishing to evaluate changes in northern pikeminnow and smallmouth bass relative abundance, consumption and predation indices, population size and age structure, condition, and feeding habits. We also analyzed relative abundance, population size and age structure, condition, and feeding habits of walleye. Biological data were collected in spring (4-26 May) and summer (26 June - 16 July) 2006 in The Dalles Dam forebay (rkm 307-313), The Dalles mid-reservoir (rkm 329-334), John Day Dam tailrace (rkm 341-347), John Day Dam forebay (rkm 347354), John Day mid-reservoir (rkm 387-394), and McNary Dam tailrace (rkm 461-469) (Figure 1). Sampling methods and gear specifications have been previously described (Ward et al. 1995; Zimmerman and Ward 1999).

We recorded biological data from all northern pikeminnow, smallmouth bass, and walleye collected by electrofishing. We measured all fish collected (mm FL) and recorded total body weight (g) from fish $\geq 200 \mathrm{~mm}$. We collected scales from 25 smallmouth bass per 25 mm FL size increment, and from all northern pikeminnow and walleye. In addition, northern pikeminnow ($\geq 425 \mathrm{~mm}$ FL) and walleye scales collected during tagging operations in 2006 were used to supplement those collected during the indexing season. We collected and preserved digestive tract contents from northern pikeminnow, smallmouth bass, and walleye $\geq 200 \mathrm{~mm}$ FL using methods described by Ward et al. (1995). Northern pikeminnow $\geq 200 \mathrm{~mm}$ FL were sacrificed to remove their digestive tract; this also enabled us to establish sex (male, female, or undetermined) and maturity (undetermined, immature, developing, ripe, or spent).

Laboratory Procedures.-We examined digestive tract contents of northern pikeminnow, smallmouth bass, and walleye to measure relative consumption rates of juvenile salmonids. Details of laboratory methods are given in Ward et al. (1995). Parker et al. (1995) described methods of age determination using scales.

Data Analysis.-We used catch per unit effort (CPUE) (Appendix Table C-1) of standardized (900 s) electrofishing runs to calculate northern pikeminnow abundance and predation indices. Abundance indices were calculated as the product of CPUE and reservoir or area-specific surface area (Ward et al. 1995). We compared abundance indices of northern pikeminnow in 2006 with those from 1990-1996, 1999, and 2004 for sampling areas in The Dalles and John Day reservoirs. We used transformed catch $\left(\log _{10}\right.$ (catch +1$)$) as an index of smallmouth bass and walleye relative densities.

We used the following formulas to calculate consumption indices (CI) for northern pikeminnow and smallmouth bass:

$$
\mathrm{CI}_{\mathrm{NPM}}=0.0209 \cdot \mathrm{~T}^{1.60} \cdot \mathrm{MW}^{0.27} \cdot\left(\mathrm{~S} \cdot \mathrm{GW}^{-0.61}\right)(\text { Ward et al. 1995 }),
$$

and

$$
\mathrm{CI}_{\mathrm{SMB}}=0.0407 \cdot \mathrm{e}^{(0.15)(\mathrm{T})} \cdot \mathrm{MW}^{0.23} \cdot\left(\mathrm{~S} \cdot \mathrm{GW}^{-0.29}\right)(\text { Ward and Zimmerman 1999), }
$$

where

$$
\begin{array}{ll}
\mathrm{CI}_{\mathrm{NPM}} & =\text { consumption index for northern pikeminnow, } \\
\mathrm{C} \mathrm{I}_{\mathrm{SMB}} & =\text { consumption index for smallmouth bass, } \\
\mathrm{T} & =\text { water temperature }\left({ }^{\circ} \mathrm{C}\right), \\
\mathrm{MW} & =\text { mean predator weight }(\mathrm{g}), \\
\mathrm{S} & =\text { mean number of salmonids per predator, and } \\
\mathrm{GW} & =\text { mean gut weight }(\mathrm{g}) \text { per predator. }
\end{array}
$$

The consumption index is not a direct estimate of the number of juvenile salmonids eaten per day by an average predator; however, it is linearly related to the consumption rate of northern pikeminnow (Ward et al. 1995) and smallmouth bass (Ward and Zimmerman 1999). We compared spring (May) and summer (June-July) consumption indices for 2006 to those from 1990-1996, 1999, and 2004.

We used the product of abundance and consumption indices to calculate predation indices for northern pikeminnow for spring and summer periods, and compared northern pikeminnow predation among years when data were collected. The daily juvenile salmonid passage indices at John Day and McNary dams were plotted to compare timing of index sampling with concentrations of juvenile salmonids (FPC 2006; Appendix Figure A-1). As in 2004 and 2005, we calculated a predation index for smallmouth bass in response to reports of increased abundance in some areas. Ward and Zimmerman (1999) observed that smallmouth bass densities varied seasonally in the Columbia and Snake rivers; we therefore calculated predation indices using CPUE (Appendix Table C3) as a season-specific relative abundance index. We multiplied the product of the season-specific CPUE and reservoir or area-specific surface area by its corresponding consumption index to obtain a season-specific predation index.

To evaluate age structure, we examined the change in frequency of age 3-5 northern pikeminnow, age 4-5 smallmouth bass, and age 5-6 walleye from previous years. Because the relative abundances of northern pikeminnow year classes in electrofishing catches were biased by exploitation rates that varied among years (Friesen and Ward 1999), we limited our comparisons to abundance of northern pikeminnow large enough to be effectively sampled and small enough to be excluded from the NPMP (ages $3-5$). We constructed smallmouth bass electrofishing catch curves (ODFW, unpublished data) and concluded that younger smallmouth bass (ages 1-3) were not sampled in proportion to their abundance. We therefore limited our comparisons to age 4-5 smallmouth bass. We constructed similar catch curves for walleye (ODFW, unpublished data) and found that age 1-4 fish were underrepresented in the catch, so we limited our analysis to age 5-6 walleye.

Northern pikeminnow exploitation rates are greater for larger fish than for smaller ones (Zimmerman et al. 1995); therefore, sustained fisheries should decrease the abundance of large fish relative to the abundance of smaller fish. We used proportional stock density (PSD; Anderson 1980), where PSD $=100 \bullet$ (number of fish \geq quality length / number of fish \geq stock length) to compare size structure of northern pikeminnow, smallmouth bass, and walleye populations among years in The Dalles and John Day reservoirs. Stock and quality sizes for northern pikeminnow are 250 and 380 mm FL, respectively (Beamesderfer and Rieman 1988; Parker et al. 1995). We also used relative stock density (RSD-P) indices to examine smallmouth bass and walleye populations. Stock, quality, and preferred size classes for smallmouth bass are $180 \mathrm{~mm}, 280 \mathrm{~mm}$, and

350 mm TL where RSD-P = $100 \bullet$ (number of fish \geq preferred length / number of fish \geq stock length) (Gabelhouse 1984). For walleye, stock, quality, and preferred lengths are $250 \mathrm{~mm}, 380 \mathrm{~mm}$, and 510 mm TL, respectively (Willis et al. 1985).

Changes in body condition may indicate a response to sustained exploitation. We used relative weight (W_{r}; Anderson and Gutreuter 1983) to compare the condition of northern pikeminnow, smallmouth bass, and walleye in 2006 with previous years. We used the standard weight $\left(\mathrm{W}_{\mathrm{s}}\right)$ equations for northern pikeminnow (Parker et al. 1995), smallmouth bass (Kolander et al. 1993), and walleye (Murphy et al. 1990) to calculate relative weight $\left(\mathrm{W}_{\mathrm{r}}=100[\right.$ weight $\left.] / \mathrm{W}_{\mathrm{s}}\right)$. We calculated median W_{r} for male and female northern pikeminnow and all smallmouth bass and walleye, which were not sexed. To compare W_{r} among years, we used a one-way ANOVA and a Holm-Sidak post-hoc test to determine where pair-wise differences occurred. In areas where data were not distributed normally, we used a Kruskal-Wallis one-way ANOVA on ranks and a Dunn's test to determine where pair-wise differences occurred.

Results

Fishery Evaluation, Predation Estimates, and Tag Loss

We tagged and released 1,330 northern pikeminnow $\geq 200 \mathrm{~mm}$ FL throughout the lower Columbia and Snake rivers in 2006; 881 were $\geq 250 \mathrm{~mm}$ FL (Appendix Table B1). In 2006, removal fisheries harvested 236,232 northern pikeminnow $\geq 200 \mathrm{~mm}$; 232,883 in the sport-reward fishery (PSMFC 2006) and 3,349 in the dam-angling fishery (USDA, unpublished data). A total of 158 tagged northern pikeminnow were recaptured; 155 in the sport-reward fishery and three in the dam-angling fishery. Fish tagged and recaptured in 2006 were at-large from two to 182 days, and 78% of the recaptures were \geq 250 mm FL (Appendix Table B-1). However, based on actual sampled catch proportions, an estimated 65% of the sport-reward harvest was $\geq 250 \mathrm{~mm}$ FL. Median fork length of northern pikeminnow harvested in the sport-reward fishery was 279 mm (R. Bruce, WDFW, personal communication). Seventeen northern pikeminnow with PIT tags and missing spaghetti tags were recaptured in the sport-reward fishery, yielding a tag loss estimate of 9.9%; we adjusted 2006 exploitation rates accordingly.

System-wide exploitation of northern pikeminnow $\geq 200 \mathrm{~mm}$ FL by the sportreward fishery was 14.6% (95% confidence bounds 10.5% - 18.6\%; Appendix Table B2). Reservoir/area-specific exploitation rates ranged from 10.5% in Bonneville Reservoir to 22.4% in The Dalles Reservoir. Exploitation in Little Goose Reservoir (where we had not tagged since 2000) was 20.0%. We did not calculate exploitation rates in John Day and Lower Granite reservoirs due to an insufficient number of recaptures in these reservoirs ($n<4$; Appendix Table B-2; Styer 2003). We calculated multi-year exploitation estimates of 15.9% below Bonneville Dam and 10.8% in Bonneville Reservoir using PIT tag data from the last four years; these were slightly higher than the single year estimates of 14.6% and 10.5% for fish $\geq 200 \mathrm{~mm}$.

The system-wide exploitation rate of northern pikeminnow $200-249 \mathrm{~mm}$ FL was 9.9% for the sport-reward fishery (95% confidence bounds $5.6 \%-14.2 \%$; Appendix

Table B-3). We had sufficient recaptures ($n \geq 4$) of northern pikeminnow to calculate exploitation rates for Below Bonneville Dam (9.6\%), Bonneville Reservoir (6.7\%), and Little Goose Reservoir (17.4\%).

For northern pikeminnow $\geq 250 \mathrm{~mm}$ FL, system-wide exploitation was 17.1% (95% confidence bounds 11.3% - 22.8%; Appendix Table B-4). Exploitation rates ranged from 11.2% in McNary Reservoir to 26.3% in Little Goose Reservoir (Figure 2). Not enough fish were recaptured in John Day and Lower Granite reservoirs to estimate exploitation.

Modeling results indicated potential predation by northern pikeminnow on juvenile salmonids in 2006 ranged from 56% to 86% of pre-program levels, with a median estimate of 75%. Projections through 2011 indicate continued harvest at average 1995-2006 exploitation levels would result in minimal additional reductions in predation.

Figure 2.-Exploitation rates of northern pikeminnow $\geq 250 \mathrm{~mm}$ fork length in each reservoir or area, 1991-2006. Exploitation rates were not calculated where the number of recaptured tags was low $(n<4)$. Exploitation rates for 2000 - 2002 were not adjusted for tag loss. Error bars denote the 95% confidence interval.

Figure 3.-Relationship between system-wide sport-reward exploitation rate (Sin^{-1} $\mathrm{EXR}^{0.5}$) of northern pikeminnow $\geq 250 \mathrm{~mm}$ FL and mean Columbia River gage height (ft) below Bonneville Dam during the sport-reward season (May - September 1995-2005 and May - October 2006).

In 2006 we found a significant relationship between the system-wide sport-reward exploitation rate for northern pikeminnow $\geq 250 \mathrm{~mm}$ FL and mean Columbia River gage height measured below Bonneville Dam during the sport-reward season. $\left(r^{2}=0.45 ; P=\right.$ 0.02 ; Figure 3). We also found that Tier 3 pay and the number of Tier 3 anglers explained 99% of the variation in exploitation of northern pikeminnow $\geq 250 \mathrm{~mm}$ FL (r^{2} $=0.99 ; P<0.001$).

We sampled 299 (8.9% of the total catch) northern pikeminnow captured in the dam-angling fishery; most (74\%) were from The Dalles Dam. Mean fork length was 379 $\pm 4 \mathrm{~mm}$ (mean $\pm \mathrm{SE}$). Three tagged northern pikeminnow were recovered, two at Bonneville Dam and one at The Dalles Dam. We were unable to calculate an exploitation rate specific to dam-angling due to the low number of recaptures. However, we included these fish in calculations of total system-wide exploitation, increasing the estimate from 14.6% to 14.8% for fish $\geq 200 \mathrm{~mm}$. Weekly exploitation estimates for areas of concurrent tagging and sport-reward fishing are given in Appendix B (Tables B5 through B-10).

FIGURE 4.-Distribution of aging discrepancies between readers for northern pikeminnow scales and opercula collected in 2006.

Age Validation

We aged 279 corresponding pairs of scale and operculum samples from northern pikeminnow recapt tendency for the experienced reader to age older than the novice reader (Figure 4). Complete agreement on operculum ages was slightly lower at 38.0%, with the novice reader aging older than the experienced reader (Figure 4). Agreement within one year for scales was 86.7% (95% confidence bounds $82.8-90.7 \%$), and was not significantly different from reader agreement for opercula (83.5%; 95% confidence bounds 79.2 87.9\%).

Corresponding scale and operculum age discrepancies in 2006 were dependent on the size (FL) of northern pikeminnow ($\mathrm{F}=18.96, P<0.05$). Northern pikeminnow ≥ 350 mm FL were aged significantly older on opercula relative to scales than fish $<350 \mathrm{~mm}$ FL ($\mathrm{t}=4.35, P<0.05$). For fish $<350 \mathrm{~mm}$ FL, ages assigned to scales matched ages
assigned to corresponding opercula within one year 73.2% of the time (Figure 5, panel A), but age discrepancies were significantly different from zero ($\mathrm{t}=8.57, P<0.05$). For fish $\geq 350 \mathrm{~mm}$ FL, scale ages matched with corresponding operculum ages within one year 50.0% of the time (Figure 5, panel B), and discrepancies were also significantly different from zero $(t=10.25, P<0.05)$. In addition, we found a significant positive relationship between scale and operculum age ($\mathrm{F}=99.34, P<0.05 ; r^{2}=0.62 ; \mathrm{Y}=1.07 \mathrm{x}$ +1.96), regardless of FL, with opercula assigned ages older than corresponding scales 62% of the time (Figure 6).

We examined 284 operculum samples from northern pikeminnow recaptured in 2006. We found 263 (93%) exhibited a detectable OTC mark and were examined for mark quality; of these, 18 were from 2003, 28 from 2004, 58 from 2005, and 159 were from northern pikeminnow that had been tagged in 2006. We found no relationship between OTC mark failure and mark year ($\chi^{2}=0.86, \mathrm{df}=2, P=0.65$), and mark quality of the 263 fish that exhibited an OTC mark was not dependent on the tagging year ($\chi^{2}=$ 8.94, $\mathrm{df}=6, P=0.18$). However, mark quality of fish recaptured in 2006 was not distributed randomly ($\chi^{2}=7.76, \mathrm{df}=2, P<0.05$; Figure 7, panel A), with OTC marks more likely to be of fair quality than poor $\left(\chi^{2}=7.20, \mathrm{df}=1, P<0.05\right)$.

In 2006, we noted the correct number of annuli after the OTC mark 75.7\% (95\% confidence bounds $70.5-80.9 \%$) of the time, with this percentage significantly higher for good quality marks (Figure 7, panel B). Our ability to successfully identify the correct number of annuli after an OTC mark was dependent on mark year (Figure 8), with the probability of correctly identifying the correct number of annuli in 2006 (zero) significantly higher than identifying the correct number in 2004 (two) or 2005 (one). The probability of correctly identifying the correct number of annuli in 2003 (3) was similar to 2006. When we incorrectly identified the number of annuli after the OTC mark, we usually underestimated (nine out of 17 misidentifications) the number of annuli for fish marked in 2004 or earlier, and overestimated (35 out of 47) the number of annuli in northern pikeminnow marked in 2005 or later.

Figure 5.-Frequency distribution of aging discrepancies between scales and opercula taken from the same fish in 2006: northern pikeminnow $<350 \mathrm{~mm}$ fork length (A), northern pikeminnow $\geq 350 \mathrm{~mm}$ fork length (B). A discrepancy is defined as the scale age subtracted from the operculum age.

Figure 6.-Plot of ages assigned to corresponding scales and opercula from northern pikeminnow recaptured in 2006. The 45° line represents the point where scale and operculum ages would be the same. Numbers denote the quantity at each scale/operculum combination $(n=279)$.

OTC Mark Quality
Figure 7.-Frequency distribution of OTC mark quality on opercula from northern pikeminnow tagged between 2003 and 2006 and recaptured in 2006 (A) and correctly identified annuli after the OTC mark (B). Bars without a letter in common are significantly different ($P<0.05$). Error bars represent 95% confidence intervals.

Tag Year
Figure 8.-Frequency distribution by tagging year of correctly identified annuli after the OTC mark on opercula from northern pikeminnow recaptured in 2006. Bars without a letter in common are significantly different $(P<0.05)$. Error bars represent 95% confidence intervals.

Biological Evaluation

Predator sampling near lower Columbia River dams in 2006 generally coincided with peaks in juvenile salmonid passage indices (Appendix Figure A-1). The abundance index values for northern pikeminnow in The Dalles Reservoir forebay and tailrace areas were the lowest since sampling began in 1990 (Appendix Table C-5). The mid-reservoir area of The Dalles Reservoir was sampled for the first time since 1993 and its abundance index was over three times higher than in the forebay and tailrace. Abundance index values for all areas of John Day Reservoir were among the lowest to date (Appendix Table C-5). Like in The Dalles Reservoir, the mid-reservoir portion of John Day Reservoir had the highest northern pikeminnow abundance index.

In spring 2006, smallmouth bass relative densities in The Dalles and John Day reservoirs were among the highest to date (Appendix Table C-6). Densities were highest in the forebay and mid-reservoir areas of both reservoirs. Summer smallmouth bass densities in 2006 were higher than any previous year, except in the John Day forebay
(Appendix Table C-7). The John Day mid-reservoir had the highest overall smallmouth bass densities during both seasons.

We report walleye relative densities for the first time in 2006. Since sampling began in the early 1990s, both spring and summer walleye densities have been relatively low in The Dalles and John Day reservoirs (Appendix Table C-8; Appendix Table C-9). The exception to this is in the John Day Reservoir tailrace, where walleye densities were highest, and where abundance appears to have slightly increased in recent years.

Of the 62 northern pikeminnow digestive tracts examined, 33% contained food (e.g. crayfish, insects, and fish) (Appendix Table C-10). All identifiable fish remains found in northern pikeminnow digestive tracts were Oncorhynchus spp. (Appendix Table C-11). During both seasons, John Day Reservoir had a higher percentage of northern pikeminnow stomach samples containing Oncorhynchus spp. than did The Dalles Reservoir (Appendix Table C-10).

We examined 1,840 smallmouth bass stomach samples; 84.5% contained food items (Appendix Table C-10). The species composition of identifiable fish remains in smallmouth bass stomach samples varied little among reservoirs. In The Dalles and John Day reservoirs, sculpin Cottus spp. (81.3% and 68.2%, respectively), Oncorhynchus spp. (5.4% and 13.6%), and Micropterus spp. (4.5% and 5.7%) were identified most often (Appendix Table C-11). Additionally, we found mountain whitefish Prosopium williamsoni, lamprey Lampetra spp., peamouth Mylocheilus caurinus, suckers Catostomus spp., catfish Ictaluridae, and yellow perch Perca flavescens. Smallmouth bass in all areas and seasons contained 13% fish; however, less than 3% contained Oncorhynchus spp. (Appendix Table C-10).

Walleye consumed Oncorhynchus spp. in all areas and seasons, with the exception of The Dalles Reservoir during summer (Appendix Table C-10). Oncorhynchus spp. accounted for 63.6% and 70.8% of identified fish in walleye stomachs in The Dalles and John Day reservoirs, respectively. Catostomus spp. and Cottus spp. were found to a lesser extent, comprising 18.2% and 20.0% of identified fish (Appendix Table C-11).

The spring 2006 CI value for northern pikeminnow in The Dalles mid-reservoir was 0.5 (Appendix Table C-12). Spring CI values in the John Day Reservoir tailrace varied among years, with no apparent trend. In 2006, summer consumption was the highest to date for The Dalles Reservoir tailrace (Appendix Table C-13). In the remaining locations, we either did not sample or were unable to calculate indices due to insufficient sample sizes ($n \leq 5$).

Spring consumption indices for smallmouth bass in The Dalles and John Day reservoirs were low and varied little among areas (Appendix table C-14). The summer CI value for the John Day forebay was higher than in 2004 (Appendix Table C-15). However, the summer CI value for the John Day Reservoir tailrace was lower than in 2004.

We calculated a predation index for The Dalles mid-reservoir for the first time in 2006. The spring PI value for northern pikeminnow was 0.4 (Appendix Table C-16). In
the John Day Reservoir tailrace, the PI value during the spring was 73% lower than the average for 1995 - 1996, 1999, and 2004. The summer PI value for The Dalles Reservoir tailrace was 45% lower than in 2004 (Appendix Table C-17). In all other areas, northern pikeminnow predation indices were either similar to past years or were not calculated due to insufficient sample sizes $(n \leq 5)$.

We calculated smallmouth bass predation indices for the first time in The Dalles forebay and mid-reservoir areas (Appendix Table C-18). In 2006, the summer PI value was 95% lower in The Dalles Reservoir tailrace than in 2004. In the John Day forebay, the spring PI value dropped from 1.6 in 2004 to zero in 2006, and decreased 50% from 2004 in the summer. The spring PI value for the mid-reservoir was 52% lower than in 2004. Conversely, the summer PI value was notably higher than in 2004. In the John Day Reservoir tailrace, summer PI values were 60% lower than in 2004. In The Dalles Reservoir tailrace, during the summer, northern pikeminnow predation was much higher than smallmouth bass predation (Appendix Table C-19). Differences in other areas were negligible or incomparable due to insufficient sample sizes.

Northern pikeminnow year-class analysis in The Dalles Reservoir showed that age- 5 fish made up a larger percentage of the population than did age- 3 or age- 4 fish in three out of the four years that data are available (Figure 9). In John Day Reservoir, for most years from 1990 to 1996, age-5 fish also tended to predominate within the age 3-5 group. However, in the three years sampled since 1996 (1999, 2004, and 2006), the proportion of age-3 fish has increased substantially (Figure 9). In addition, the percentage of the population consisting of age 3-5 northern pikeminnow in John Day Reservoir was, on average, twice as high during 1999-2006 compared to 1990-1996.

We collected scales from smallmouth bass in The Dalles Reservoir for the first time in 2006. A total of 158 bass scales were read, 11.4% of which were age- 4 fish and 15.2% age- 5 fish. Year-class analysis in John Day Reservoir indicated that in 2006 the percentage of age $4-5$ smallmouth bass in the population returned to a level similar to that observed in 1995, after a slight increase during 1996 - 2004 (Figure 10). Age-4 smallmouth bass continued to predominate within the age $4-5$ group in John Day Reservoir.

We assessed walleye year-class strength for the first time in 2006. The percentage of age 5-6 walleye in the lower Columbia River appeared to be relatively stable (Figure 11). Lower percentages in 2004 and 2005 might be attributed to small sample sizes. Age-5 walleye predominated within the age 5-6 group.

The 2006 northern pikeminnow PSD value for The Dalles Reservoir was 55\% higher than in 1999; however, it was only slightly higher than the average for all previous years. Furthermore, stock density in The Dalles Reservoir did not show any discernable trend during the sampling time frame (Figure 12). We could not calculate a northern pikeminnow PSD for John Day Reservoir in 2006 due to an inadequate sample size ($n<$ 20 for stock size fish).

FIGURE 9.-Percent composition of age 3-5 northern pikeminnow, relative to the total sample, in the The Dalles and John Day reservoirs, 1990-1996, 1999, 2004, and 2006.

FIGURE 10.-Percent composition of age 4-5 smallmouth bass, relative to the total sample, in John Day Reservoir, 1990-1996, 1999, 2004, and 2006.

For The Dalles Reservoir, smallmouth bass PSD in 2006 was slightly lower than the average for all previous years while RSD-P was the highest since sampling began. Both PSD and RSD-P values for smallmouth bass in John Day Reservoir were similar to previous year averages. Stock densities in both reservoirs appeared to vary randomly with no apparent trends (Figure 13).

We report walleye PSD and RSD-P for the first time in 2006. In The Dalles Reservoir, PSD has fluctuated while RSD-P was slightly higher in 2006 compared to previous years. Walleye PSD and RSD-P in John Day Reservoir decreased in recent years, with values lowest in 2006 (Figure 14).

Median relative weights for male and female northern pikeminnow in the The Dalles Reservoir in 2006 were significantly higher $(P<0.05)$ than previous years, except for male northern pikeminnow in 1994 (Figure 15). Both sexes exhibited a similar pattern, with relative weights generally increasing in the last 10 years. In John Day Reservoir, relative weights have slightly increased in recent years (Figure 16); however, female northern pikeminnow W_{r} in 2006 was only significantly higher than 1991 ($P<$ 0.05), and male northern pikeminnow W_{r} in 2006 did not significantly differ from any previous year.

Figure 11.-Percent composition of age 5-6 walleye, relative to the total sample, in the lower Columbia River, 1992-1996, 1999, and 2004-2006.

Relative weights for smallmouth bass appear to fluctuate moderately in The Dalles and John Day reservoirs (Figure 17). In both reservoirs, relative weights were lowest in 1996 and have increased since then. Relative weights in 2006 were significantly higher than in $1996(P<0.05)$.

We report walleye relative weights for the first time in 2006. In contrast to northern pikeminnow and smallmouth bass, relative weights for walleye were less variable from year to year (Figure 18). Relative weight in The Dalles Reservoir in 2006 was significantly higher than in 1993 ($P<0.05$); however, relative weight in John Day Reservoir did not vary by year $(P=0.053)$. In both reservoirs, all median W_{r} values for walleye were below 100 .

Figure 12.-Proportional stock density (PSD) and sample size (N) of northern pikeminnow in The Dalles and John Day reservoirs, 1990 - 1996, 1999, 2004, and 2006. $\mathrm{X}=$ insufficient sample size to estimate stock density.

Figure 13.-Proportional stock density (PSD), relative stock density (RSD-P), and sample size (N) of smallmouth bass in the The Dalles and John Day reservoirs, 1990 1996, 1999, 2004, and 2006. X = insufficient sample size to estimate stock density.

Year

Figure 14.-Proportional stock density (PSD), relative stock density (RSD-P), and sample size (N) of walleye in The Dalles and John Day reservoirs, 1990 - 1996, 1999, 2004, and 2006. $\mathrm{X}=$ insufficient sample size to estimate stock density.

Figure 15.-Relative weight of male and female northern pikeminnow in The Dalles Reservoir, 1990, 1993-1996, 1999, and 2006. The horizontal line near the center of each bar is the median, the ends of the bar are $25^{\text {th }}$ and $75^{\text {th }}$ percentiles, and the whiskers are the $10^{\text {th }}$ and $90^{\text {th }}$ percentiles. Bars without a letter in common differ significantly ($P<$ $0.05)$; numbers below the bars are the sample size.

Figure 16.-Relative weight of male and female northern pikeminnow in John Day Reservoir, 1990-1996, 1999, 2004, and 2006. The horizontal line near the center of each bar is the median, the ends of the bar are $25^{\text {th }}$ and $75^{\text {th }}$ percentiles, and the whiskers are the $10^{\text {th }}$ and $90^{\text {th }}$ percentiles. Bars without a letter in common differ significantly ($P<$ $0.05)$; numbers below the bars are the sample size.

Year

Figure 17.-Relative weight of smallmouth bass in The Dalles and John Day reservoirs, 1990-1996, 1999, 2004, and 2006. The horizontal line near the center of each bar is the median, the ends of the bar are $25^{\text {th }}$ and $75^{\text {th }}$ percentiles, and the whiskers are the $10^{\text {th }}$ and $90^{\text {th }}$ percentiles. Bars without a letter in common differ significantly ($P<0.05$); numbers below the bars are the sample size.

Figure 18.-Relative weight of walleye in The Dalles and John Day reservoirs, 19931996, 1999, 2004, and 2006. The horizontal line near the center of each bar is the median, the ends of the bar are $25^{\text {th }}$ and $75^{\text {th }}$ percentiles, and the whiskers are the $10^{\text {th }}$ and $90^{\text {th }}$ percentiles. Bars without a letter in common differ significantly ($P<0.05$); numbers below the bars are the sample size.

Discussion

In 2006, we tagged and released more northern pikeminnow than we had since 1996; resulting in narrower exploitation rate confidence intervals. System-wide exploitation of northern pikeminnow $\geq 250 \mathrm{~mm}$ FL (17.1\%) by the sport-reward fishery was higher than the 2001-2005 average exploitation rate (15.8%), and was the third highest in program history. Furthermore, total system-wide exploitation has been within the target range of 10-20\% (Rieman and Beamesderfer 1990) in 14 of 16 years.

We continue to observe variability in both system-wide and area-specific exploitation rates. In previous years, sport-reward exploitation of northern pikeminnow \geq 250 mm FL appeared to be driven by river flow (Takata and Koloszar 2004), with exploitation increasing as river levels decreased. However, the amount of variability explained by river flow weakened during 2006, and the last couple of years (Jones et al. 2005; Reesman et al. 2006), suggesting that other factors may play a role in determining exploitation rates. Our analysis in 2006 indicated that reward structure variables such as Tier 3 pay and the number of Tier 3 anglers had a strong influence on exploitation rates during 2000-2006. Therefore, it appears that modifications to the reward structure of the sport-reward fishery in recent years may have reduced the effect of river flow on exploitation. Another factor that probably contributes to the weakening of the river flow model is angler skill. While variables such as river flow fluctuated from year to year, sport-reward anglers have steadily become more proficient as a group. In 2000, 65% of anglers caught <10 northern pikeminnow during the season, but by 2006, that percentage had dropped to 45% (PSMFC, unpublished data). An increase in skill would likely influence both the number and pay of Tier 3 anglers, and may be one reason why catch and exploitation rates remained high in 2006 despite relatively high river flow. We will continue to evaluate changes in the reward structure and angler skill, as well as explore other exploitation rate predictors.

For the $10^{\text {th }}$ time in 13 years, we have been unable to calculate exploitation rates in John Day Reservoir. This is likely due to low densities of northern pikeminnow, but may also be related to the large size of the reservoir and light fishing pressure. We tagged 125 northern pikeminnow in Little Goose Reservoir and were able to calculate exploitation rates for all size classes there for the first time since 2000. Among reservoirs/areas, Little Goose Reservoir had the highest exploitation rates for fish that were $\geq 250 \mathrm{~mm}$ and $200-249 \mathrm{~mm}$. We will continue to tag and monitor northern pikeminnow in Little Goose Reservoir in 2007.

Tagged northern pikeminnow $200-249 \mathrm{~mm}$ FL continue to be recovered in the fishery at a lower rate than untagged fish of the same size and larger tagged fish. In 2006, these smaller fish comprised about 34% of the northern pikeminnow tagged and released. Although 35% of the untagged northern pikeminnow harvested by the sportreward fishery in 2006 consisted of fish 200-249 mm FL, only 22% of the recaptured tagged fish were of this size. Higher mortality or other factors may prevent smaller fish from being recaptured in the fishery at a rate more consistent with their share of the overall catch (Takata and Koloszar 2004). We may need to re-assess our current practice of tagging fish in this size category as differential mortality or behavior between marked and unmarked fish violates central assumptions of the Petersen mark-recapture protocol (Ricker 1975).

The dam-angling fishery accounted for only 1.4% of the northern pikeminnow harvest, compared to 11.2% during 1991-1996 (Friesen and Ward 1999). In 2006, the dam-angling fishery recaptured three tagged fish; no recaptures occurred during 2001 and 2002, the last two seasons before the fishery was suspended in 2003 (Takata and Friesen 2003). Northern pikeminnow sampled from the dam-angling fishery in 2006 were smaller (379 mm vs. 401 mm) than those reported by Friesen and Ward (1999) during 1990 - 1996. Our sample size was relatively small and Friesen and Ward (1999) collected data from a greater number of dams; however, the size difference we observed would be expected if the NPMP is functioning as intended (i.e., the northern pikeminnow population consists of fewer large fish). We will continue to monitor dam-angling activities in 2007, scheduled this year at The Dalles and John Day dams.

We calculated a tag loss estimate of 9.9% in 2006 , which was higher than the 8.1% estimated in 200 loop configuration (Guy et al. 1996). Timmons and Howell (1995) observed a 50% tag loss rate in two catostomid species after 190 days. Our estimated tag loss rate in 2006 seems reasonable considering the reported tag loss range ($5-25 \%$) of similar studies (Ebener and Copes 1982; Muoneke 1992). We were able to accurately discern the year each tag loss fish was marked between 2003 and 2006 by utilizing PIT tags as secondary marks for our tag loss study, allowing us to calculate multi-year exploitation rates. We plan to employ PIT tags as our secondary mark again in 2007.

Our 2006 estimated reduction in potential predation (75% of pre-program levels) was based on the Friesen and Ward (1999) predation model. This is a slightly greater reduction than observed in 2005 (78%; Reesman et al. 2006), and is likely related to the higher than average exploitation rates we have seen in the last couple of years. However, these levels should be considered cautiously. The Friesen and Ward (1999) model is based on the average pre-program northern pikeminnow population age structure, and may suffer from age validation related issues. We have developed a new model based on fish size rather than age, and though preliminary results from this updated model indicate that actual reductions may be higher than previously thought, it has not yet been subjected to peer review.

Age Validation

In 2006, reader agreement within one year for scale ages (86.7\%) was very similar to the 2002-04 average (86.5%). Within one year agreement for opercula (83.5%) was also similar to the $2002-2004$ average (82.0%). In most years of this study, reader agreement has been comparable between the two aging structures. The exceptions were in 2001 and 2005 when reader agreement differed by 15% and 64%, respectively (Takata and Ward 2002; Reesman et al. 2006). However, 2001 was the first year that we aged opercula, and insufficient training may have contributed to the unusual results in 2005 (Reesman et al. 2006). Nevertheless, aging precision for scales has always been greater than that for opercula. These results contrast with those of Baker and McComish (1998) who determined that opercula were aged more precisely than scales in yellow perch Perca flavescens. In their study, yellow perch ranged in age from 0 to 10 years, while we have aged northern pikeminnow to over 20 years. Older fish often have annuli crowded near the edge of the operculum, making it difficult to distinguish between true and false annuli (Baker and McComish 1998). In addition, we have far less
experience aging opercula compared to scales, which may explain why aging precision has been lower for opercula in our study.

Comparisons between scale and operculum derived ages have been consistent among the six years we have conducted this analysis. Beyond 8-9 years of age, northern pikeminnow opercula are consistently aged older than corresponding scales. Studies by Campbell and Babaluk (1979), Scoppettone (1988), Donald et al. (1992), and the Washington Department of Fish and Wildlife (J. Sneva, WDFW, personal communication) have also found that ages derived from opercula tended to be older than those from scales. Methods that provide older estimates of fish age, such as opercula, are generally thought of as more accurate relative to true fish age than those methods that yield younger estimates (Dubois and Lagueux 1968; Donald et al. 1992). We found a significant positive linear relationship between scale and operculum ages; therefore, ages assigned to opercula could be predicted from scale ages, with a certain degree of error.

In 2006, we again utilized fluorescent OTC marks as an operculum age validation tool. The percentage of OTC mark failures in 2006 was lower than in 2005, but did not vary by tagging year. The presence of a discernible OTC mark in 2006 (93\%) was similar to that reported by Rien and Beamesderfer (1994) in white sturgeon (98\%). Although mark quality was not randomly distributed, we did not find evidence that scores were related to the tagging year. The percentage of "good" quality OTC marks in 2006 ($\sim 32 \%$) was higher than in 2004 and 2005; however, the mark quality evaluator in 2006, although experienced, was different than the person who evaluated OTC marks in 2004 and 2005. Even with established criteria for assessing mark quality, qualitative evaluations are always more subjective than quantitative measurements, and this may lead to variation in mark scoring among years when evaluators differ.

Our ability to detect the correct number of annuli after the successful OTC marks was influenced by mark quality, with 90% of "good" quality samples having the correct number of annuli identified. This was significantly higher than samples with "fair" (72%) or "poor" (64%) marks. As in 2005, correctly detecting the appropriate number of annuli was related to the tagging year, and we were significantly more likely to misidentify fish marked in 2004 or 2005 than in 2006. Rien and Beamesderfer (1994) saw a similar decline in the accuracy of OTC age interpretations as time at-large increased in white sturgeon. In contrast to the opercula marked in 2004 and 2005, our ability to detect the correct number of annuli in 2003 samples was almost as good as it was with samples marked in 2006. This was an unexpected result, especially since only 17% of the 2003 samples had good quality OTC marks. The sample size for opercula marked in 2003 was relatively small $(n=18)$, so random variation in correctly identified annuli might explain the unusually high success rate for that year's samples. Though we do not intend to mark any additional northern pikeminnow with OTC, we will continue our evaluation of marks currently at-large to see if this result was an isolated incident.

Opercula may provide a more accurate representation of the true age in certain fish species than scales (Donald et al. 1992), and aging precision can be as good, or better, than that for scales (Baker and McComish 1998). In addition, several European and North American researchers have found annuli easier to identify on opercula (Le Cren 1947; Frost and Kipling 1959; Campbell and Babaluk 1979; Donald et al. 1992). Our findings suggest that opercula have good potential to be used for aging northern
pikeminnow in the Columbia River; however, our attempts to validate ages derived from opercula have met with mixed results. We have been able to mark northern pikeminnow opercula with OTC, but it has proven difficult to consistently get good quality marks. Because our ability to correctly identify annuli distal to the OTC mark is dependent on the quality of the mark, we have only had moderate success. Our comparisons of scale ages to ages obtained from opercula have consistently shown that we may be underestimating northern pikeminnow ages based on scales. Also, when we incorrectly identified annuli on OTC-marked opercula, we usually underestimated the number of annuli. Our tendency to underestimate age, even with opercula, could lead us to overestimate growth and natural mortality rates (Leaman and Nagtegaal 1987; Casey and Natanson 1992; Rien and Beamesderfer 1994), and may impact our northern pikeminnow exploitation rate estimates. We will continue to utilize both structures in our aging analysis while working to modify procedures to increase accuracy and precision. Until we can improve the precision and accuracy of ages assigned to northern pikeminnow, we should be cautious about any age related interpretations we make.

Biological Evaluation

Reductions in the northern pikeminnow population may improve outmigrating salmonid survival if an equal compensatory response by the remaining northern pikeminnow or other predators does not minimize the benefits (Beamesderfer et al. 1996; Friesen and Ward 1999). An increase in the abundance, population size structure, condition factor, or consumption and predation indices of remaining predators might indicate such a response (Knutsen and Ward 1999). Sustained exploitation should decrease the proportion of large (older) fish to small (younger) fish (Zimmerman et al. 1995), and smaller northern pikeminnow consume fewer salmonids than their larger counterparts (Vigg et al. 1991).

Northern pikeminnow stock density and year class strength have been relatively stable in The Dalles Reservoir with no apparent trends over time. On the other hand, relative weight of northern pikeminnow in The Dalles Reservoir has increased in the past decade. Northern pikeminnow abundance in The Dalles Reservoir has decreased since the mid-1990s; improved condition in remaining northern pikeminnow could be a sign of a density dependent response to exploitation. Sass et al. (2004) found that body condition of walleyes within individual lakes in northern Wisconsin was density dependent. However, Reesman et al. (2006) suggested that density independent factors such as prey availability could also affect condition. It may be noteworthy that the annual passage index for juvenile salmonids at John Day Dam has also increased in the last ten years (FPC 2007).

In John Day Reservoir, we have not had sufficient data to estimate stock density for northern pikeminnow since 1999, and although relative weight data show a slight increase since 1996, sample sizes in 1999, 2004, and 2006 were small. However, pooled age composition data for northern pikeminnow in John Day Reservoir appear to indicate that the population may be getting younger. Between 1990 and 1996, most of the population was comprised of fish older than age 5 , but since 1996, the largest segment of the population has been in the age 3-5 group. Within this group, the dominant age class has also shifted from age 5 to age 3. Furthermore, abundance of northern pikeminnow in

John Day Reservoir has declined since 1996. These changes would suggest that the removal fishery might be having the desired effect; however, exploitation rates in John Day Reservoir have been relatively low since the early 1990s (Figure 2). Therefore, some other factor(s) may be affecting the age structure and abundance of northern pikeminnow in John Day Reservoir.

Increased northern pikeminnow consumption and predation indices might also be signs of compensation by remaining northern pikeminnow to prolonged exploitation by the NPMP (Zimmerman and Ward 1999). In 2006, we collected very few northern pikeminnow in The Dalles and John Day reservoirs ($n=62$), and 66% of the northern pikeminnow collected had empty stomachs. However, all of the identifiable fish remains in northern pikeminnow stomachs from both reservoirs were juvenile salmonids. Although northern pikeminnow consumption indices remained relatively consistent with previous years, the localized increase observed in the tailrace of John Day Dam may be a compensatory response. Reesman et al. (2006) attributed increased consumption indices in the tailraces of Bonneville and The Dalles dams to the discontinuation of dam angling in 2003. Dam angling, while contributing less to exploitation, harvested localized concentrations of northern pikeminnow that may have aggregated to feed on juvenile salmonids (Beamesderfer and Rieman 1991; Poe et al. 1991; Collis et al. 1995). In addition, the dam-angling fishery was able to harvest northern pikeminnow in boat restricted zones below dams that are inaccessible to sport-reward anglers (Takata and Ward 2001). Dam angling was reinitiated at Bonneville and The Dalles dams in 2006, and will continue in 2007 at The Dalles and John Day dams. Effort was shifted from Bonneville to John Day Dam in 2007 because of sampling difficulties at Bonneville; there are no plans to expand the fishery to other dams. In 2006, predation indices were variable but showed an overall decline in predation from previous years. However, we could not calculate northern pikeminnow predation indices in several areas due to insufficient sample sizes.

The efficacy of the NPMP also depends, in part, on the lack of response by other piscivores in the Columbia Basin to the sustained removal of northern pikeminnow (Ward and Zimmerman 1999). Smallmouth bass in The Dalles and John Day reservoirs have increased in abundance since sampling began in 1990. Jones et al. (2005) observed a particularly large increase in the forebay area of John Day Reservoir in 2004. These increases coincided with a decline in northern pikeminnow abundance during the same time. Smallmouth bass PSD in The Dalles Reservoir indicates that the population there appears to be balanced (Anderson and Weithman 1978). However, in John Day Reservoir, PSD values for smallmouth bass have usually been below 30%, potentially a sign of an unstable population experiencing higher than optimal recruitment to the stock (Anderson and Weithman 1978). Similar to northern pikeminnow, smallmouth bass relative weights in The Dalles and John Day reservoirs have increased in the past decade. However, because smallmouth bass have become more abundant during this time, improved body condition may be due to some density independent factor such as prey availability. In the past, juvenile salmonids have composed small but consistent portions of smallmouth bass diets in the Columbia River (Poe et al. 1991; Zimmerman 1999; Naughton et al. 2004). This was true again in 2006; however, the fish primarily consumed by smallmouth bass were Cottus spp. Smallmouth bass consumption indices in the lower Columbia River have remained relatively stable, and predation was minimal, except in the John Day mid-reservoir, which continued to show high rates of predation.

Ward and Zimmerman (1999) suggested the first evidence of any response by smallmouth bass would likely be a change in diet; therefore, smallmouth bass should continue to be monitored.

The abundance of walleye in The Dalles and John Day reservoirs is low compared to other predators such as northern pikeminnow and smallmouth bass, but has increased in the McNary Dam tailrace in recent years. While walleye PSD in The Dalles Reservoir continues to be relatively high, PSD in John Day Reservoir has decreased in the past several years, approaching the $30-60 \%$ range indicative of a balanced population (Anderson and Weithman 1978). This may be due to improved recruitment of stock-size fish in recent years. Relative weights for walleye have ranged from 79 to 94 in the two reservoirs, slightly on the low end of the range considered to be "ideal" for walleye (SDGFP 2007; TWRA 2007). Nevertheless, walleye W_{r} values have been relatively stable compared to northern pikeminnow and smallmouth bass. The age distribution of walleye system-wide also appears to be stable. In The Dalles and John Day reservoirs, we found Oncorhynchus spp. most often in walleye digestive tracts. Poe et al. (1991), Vigg et al. (1991), and Zimmerman (1999) found juvenile salmonids to be an important component of lower Columbia River walleye diets. Although walleye abundance in the lower Columbia River is generally low, some areas such as the McNary Dam tailrace have relatively high concentrations of walleye. Therefore, the impact of walleye predation on salmonid populations likely varies from area to area, and further monitoring of walleye population parameters and diets would be prudent.

Previous evaluations of the NPMP have not detected responses by the predator community to the sustained removal of northern pikeminnow (Ward et al. 1995; Ward and Zimmerman 1999; Zimmerman and Ward 1999). In 2006, we found some indications of possible localized responses to the removal program such as increased northern pikeminnow condition in The Dalles Reservoir, increased consumption indices for northern pikeminnow in The Dalles Reservoir tailrace, and high predation indices for smallmouth bass in the mid-reservoir area of John Day Reservoir. However, whether these changes occurred due to reductions in the northern pikeminnow population or increases in the number of migrating smolts, or a combination of factors, is difficult to determine. Density dependent compensatory responses by fish populations can be hard to identify (Rose et al. 2001), and a system-wide response difficult to ascertain. Additionally, observable responses to fishery management programs have been known to lag by more than 15 years from project inception (Hilborn and Winton 1993; Beamesderfer et al. 1996). It is possible that, although we are seeing potential localized responses, not enough time has elapsed for a system-wide response to be detected. Therefore, it is critical to continue monitoring to properly assess the impact of the NPMP.

Acknowledgements

We are particularly grateful to those who worked long hours in the field to collect the data presented in this report. Thanks to Andrew Chen, Patrick Mirick, Matt Powell, Peter Susi, and Jessica Vogt. We would also like to thank Tom Friesen, who provided guidance and support throughout the 2006 season.

This project was funded by the Bonneville Power Administration (project number 1990-077-00); the COTR was John Skidmore. Tom Rien of ODFW and Russell Porter of PSMFC (Pacific States Marine Fish Commission) administered the contract.

Additionally, we thank Mark Engelking of ODFW for the use of his laboratory space, and the staff at Irrigon fish hatchery, who loaned us a much needed dip net. We thank Eric Winther of WDFW and his staff for their cooperation and help with project coordination. Kathleen Moyer of WDFW provided PIT tag recovery data and operculum samples. The U.S. Army Corps of Engineers was very cooperative regarding entry into boat-restricted zones near dams; in particular, we appreciate the assistance of John Bailey, Brad Eby, Mike Halter, Terry Hurd, Wayne John, Greg Moody, Jon Rerecich, and Miro Zyndol. We were provided PIT tags by PSMFC.

References

Anderson, R. O. 1980. Proportional stock density (PSD) and relative weight $\left(\mathrm{W}_{\mathrm{r}}\right)$: interpretive indices for fish populations and communities. Pages 27-33 in S. Gloss and B. Shupp, editors. Practical fisheries management: more with less in the 1980s. New York Chapter American Fisheries Society, Bethesda, MD.

Anderson, R. O., and S. J. Gutreuter. 1983. Length, weight, and associated structural indices. Pages 280-300 in L. A. Nielsen and D. L. Johnson, editors. Fisheries Techniques. American Fisheries Society, Bethesda, Maryland.

Anderson, R. O., and A. S. Weithman. 1978. The concept of balance for coolwater fish populations. American Fisheries Society Special Publication 11:371-381.

Baker, E. A., and T. S. McComish. 1998. Precision of ages determined from scales and opercles for yellow perch Perca flavescens. Journal of Great Lakes Research 24:658-665.

Beamesderfer, R. C., B. E. Rieman, J. C. Elliott, A. A. Nigro, and D. L. Ward. 1987. Distribution, abundance, and population dynamics of northern squawfish, walleye, smallmouth bass, and channel catfish in John Day Reservoir, 1986. Oregon Department of Fish and Wildlife, Contract number DE-AI79-82BP35097. 1986 Annual Report to Bonneville Power Administration, Portland, Oregon.

Beamesderfer, R. C., and B. E. Rieman. 1988. Size selectivity and bias in estimates of population statistics of smallmouth bass, walleye, and northern squawfish in a Columbia River reservoir. North American Journal of Fisheries Management 8:505-510.

Beamesderfer, R. C., and B. E. Rieman. 1991. Abundance and distribution of northern squawfish, walleyes, and smallmouth bass in John Day Reservoir, Columbia River. Transactions of the American Fisheries Society 120:439-447.

Beamesderfer, R. C., D. L. Ward, and A. A. Nigro. 1996. Evaluation of the biological basis for a predator control program on northern squawfish (Ptychocheilus oregonensis) in the Columbia and Snake rivers. Canadian Journal of Fisheries and Aquatic Sciences 53:2898-2908.

Campbell, J. S., and J. A. Babaluk. 1979. Age determination of walleye, Stizostedion vitreum vitreum (Mitchill), based on the examination of eight different structures. Department of Fisheries and the Environment, Fisheries and Marine Service Technical Report number 849.

Casey, J. G., and L. J. Natanson. 1992. Revised estimates of age and growth of the sandbar shark (Carcharhinus plumbeus) from the western North Atlantic. Canadian Journal of Fisheries and Aquatic Sciences. 49:1474-1477.

Collis, K., R. E. Beaty, and B. R. Crain. 1995. Changes in catch rate and diet of northern squawfish associated with the release of hatchery-reared juvenile salmonids in a

Columbia River reservoir. North American Journal of Fisheries Management 15:346-357.

Collis, K., D. D. Roby, D. P. Craig, S. Adamany, J. Y. Adkins, and D. E. Lyons. 2002. Colony size and diet composition of piscivorous water birds on the Lower Columbia River: Implications for losses of juvenile salmonids to avian predation. Transactions of the American Fisheries Society 131:537-550.

Donald, D. B., J. A. Babaluk, J. F. Craig, and W. A. Musker. 1992. Evaluation of the scale and operculum methods to determine age of adult goldeyes with special reference to a dominant year-class. Transactions of the American Fisheries Society 121:792-796.

Dubois, A. and R. Lagueux. 1968. Etude comparée de l'âge scalaire et de l'âge otolithique de la touladi (Salvelinus namaycush), Lac Mistassini, Quebec. Naturaliste canadien (Quebec) 95:907-928.

Ebener, M. P., and F. A. Copes. 1982. Loss of Floy anchor tags from lake whitefish. North American Journal of Fisheries Management 2:90-93.

Everhart, W. H., and W. D. Youngs. 1981. Principles of fishery science, $2^{\text {nd }}$ edition. Cornell University Press, Ithaca, New York.

FPC (Fish Passage Center). 2006. Daily passage data for the smolt monitoring project, March - October 2006. Fish Passage Center. Available: www.fpc.org/smolt/SMP queries.html. (December 2006).

FPC (Fish Passage Center). 2007. Daily passage data for the smolt monitoring project, March - October 1990-2006. Fish Passage Center. Available: www.fpc.org/smolt/SMP queries.html. (January 2007).

Friesen, T. A., and D. L. Ward. 1999. Management of northern pikeminnow and implications for juvenile salmonid survival in the lower Columbia and Snake rivers. North American Journal of Fisheries Management 19:406-420.

Frost, W. E., and C. Kipling. 1959. The Determination of the Age and Growth of Pike (Esox lucius L.) from scales and opercular bones. Journal du conseil. 24:314-341.

Gabelhouse, D. W., Jr. 1984. A length-categorization system to assess fish stocks. North American Journal of Fisheries Management 4:273-285.

Guy, C. S., H. L. Blankenship, and L. B. Nielsen. 1996. Tagging and marking. Pages 353-383 in B. R. Murphy and D. W. Willis, editors. Fisheries Techniques, $2^{\text {nd }}$ edition. American Fisheries Society, Bethesda, Maryland.

Hankin, D. G., and J. Richards. 2000. The northern pikeminnow management program: An independent review of program justification, performance, and costeffectiveness. Report to the Pacific Northwest Electric Power and Conservation Planning Council, Portland, Oregon.

Hilborn, R., and J. Winton. 1993. Learning to enhance salmon production: lessons from the salmonid enhancement program. Canadian Journal of Fisheries and Aquatic Sciences 50:2043-2056.

Jones, T. A., J. A. Koloszar, M. J. Reesman, T. A. Friesen, and H. K Takata. 2005. Development of a system-wide predator control program: indexing and fisheries evaluation. Oregon Department of Fish and Wildlife, Contract Number DE-B1719-94BI24514. 2004 Annual Report to the Bonneville Power Administration, Portland, Oregon.

Knutsen, C. J., and D. L. Ward. 1999. Biological characteristics of northern pikeminnow in the Lower Columbia and Snake Rivers before and after sustained exploitation. Transactions of the American Fisheries Society 128:1008-1019.

Kolander, C. J., D. W. Willis, and B. R. Murphy. 1993. Proposed revision of the standard weights $\left(\mathrm{W}_{\mathrm{s}}\right)$ equation for smallmouth bass. North American Journal of Fisheries Management 13:398-400.

Le Cren, E. D. 1947. The determination of age and growth of the perch (Perca fluviatilis) from the opercular bone. Journal of Animal Ecology. 16:188-204.

Leaman, B. M., and D. A. Nagtegaal. 1987. Age validations and revised natural mortality rate for yellowtail rockfish. Transactions of the American Fisheries Society. 116:171-175.

Long, C. W., and F. J. Ossiander. 1974. Survival of coho salmon fingerlings passing through a perforated bulkhead in an empty turbine bag and through flow deflectors (with and without dentates) on the spillways of Lower Monumental Dam, Snake River, April-May 1973. Final Report (Contract DACW68-84-H0034) to U.S. Army Corps of Engineers, Portland, Oregon.

McFarlane, G. A., and R. J. Beamish. 1987. Selection of dosages of oxytetracycline for age validation studies. Canadian Journal of Fisheries and Aquatic Sciences 44:905-909.

Muoneke, M. I. 1992. Loss of Floy anchor tags from white bass. North American Journal of Fisheries Management 12:819-824.

Murphy, B. R., M. L. Brown, and T. A. Springer. 1990. Evaluation of the relative weight $\left(W_{r}\right)$ index, with new applications to walleye. North American Journal of Fisheries Management 10:85-97.

Naughton, G. P., D. H. Bennet, and K. B. Newman. 2004. Predation on juvenile salmonids by smallmouth bass in the Lower Granite Reservoir system, Snake River. North American Journal of Fisheries Management 24:534-544.

Nehlsen, W., J. E. Williams, and J. A. Lichatowich. 1991. Pacific salmon at the crossroads: stocks at risk from California, Oregon, Idaho, and Washington. Fisheries 16:4-21.

PSMFC (Pacific States Marine Fisheries Commission). 2006. Catch data summary 2006. Northern pikeminnow sport reward program. Available: http://www.pikeminnow.org/2006-catchdata.htm. (December 2006).

Parker, R. M., M. P. Zimmerman, and D. L. Ward. 1995. Variability in biological characteristics of northern squawfish in the lower Columbia and Snake rivers. Transactions of the American Fisheries Society 124:335-346.

Poe, T. P., H. C. Hansel, S. Vigg, D. E. Palmer, and L. A. Prendergast. 1991. Feeding of predaceous fishes on out-migrating juvenile salmonids in the John Day Reservoir, Columbia River. Transactions of the American Fisheries Society 120:405-420.

Raymond, H. L. 1988. Effects of hydroelectric development and fisheries enhancement on spring and summer Chinook salmon and steelhead in the Columbia River basin. North American Journal of Fisheries Management 8:1-24.

Reesman, M. J., T. A. Jones, M. W. Hutchinson, and T. A. Friesen. 2006. Development of a system-wide predator control program: indexing and fisheries evaluation. Oregon Department of Fish and Wildlife, Contract Number DE-B171994BI24514. 2005 Annual Report to the Bonneville Power Administration, Portland, Oregon.

Ricker, W. E. 1975. Computation and interpretation of biological statistics of fish populations. Fisheries Research Board of Canada Bulletin 191.

Rieman, B. E., and R. C. Beamesderfer. 1990. Dynamics of a northern squawfish population and the potential to reduce predation on juvenile salmonids in a Columbia River reservoir. North American Journal of Fisheries Management 10:228-241.

Rieman, B. E., R. C. Beamesderfer, S. Vigg, and T. P. Poe. 1991. Estimated loss of juvenile salmonids to predation by northern squawfish, walleyes, and smallmouth bass in John Day Reservoir, Columbia River. Transactions of the American Fisheries Society 120:448-458.

Rien, T. A. and R. C. Beamesderfer. 1994. Accuracy and precision of white sturgeon age estimates from pectoral fin rays. Transactions of the American Fisheries Society 123:225-265.

Rose, K. A., J. H. Cowan, K. O. Winemiller, A. Ransom, and R. Hilborn. 2001. Compensatory density dependence in fish populations: importance, controversy, understanding, and prognosis. Fish and Fisheries, Vol. 2 Issue 4, p. 293-327.

SDGFP (South Dakota Game Fish and Parks). 2007. Lake Oahe walleye regulations. South Dakota Game Fish and Parks. Available: www.sdgfp.info/Wildlife/Fishing/Lake Oahe/Oahewalleye.html. (January 2007).

Sass, G. G., S. W. Hewett, T. D. Beard, Jr., A. H. Fayram, and J. F. Kitchell. 2004. The role of density dependence in growth patterns of ceded territory walleye populations of northern Wisconsin: effects of changing management regimes. North American Journal of Fisheries Management 24:1262-1278.

Scoppettone, G. G. 1988. Growth and longevity of the cui-ui and longevity of other catostomids and cyprinids in western North America. Transactions of the American Fisheries Society 117:301-307.

Styer, P. 2003. Statistical consulting report to review computational methods in the northern pikeminnow management program. Report to the Oregon Department of Fish and Wildlife, Clackamas.

TWRA (Tennessee Wildlife Resources Agency). 2007. Norris gillnetting 2006. Available: www.tnfish.org/wintergill/Norris/TWRA NorrisGillnetting.html. (January 2007).

Takata, H. K., and T. A. Friesen. 2003. Development of a system-wide predator control program: fisheries evaluation. Oregon Department of Fish and Wildlife, Contract Number DE-B1719-94BI24514. 2002 Annual Report to the Bonneville Power Administration, Portland, Oregon.

Takata, H. K., and J. A. Koloszar. 2004. Development of a system-wide predator control program: fisheries evaluation. Oregon Department of Fish and Wildlife, Contract Number DE-B1719-94BI24514. 2003 Annual Report to the Bonneville Power Administration, Portland, Oregon.

Takata, H. K., and D. L. Ward. 2001. Development of a system-wide predator control program: fisheries evaluation. Oregon Department of Fish and Wildlife, Contract Number DE-B1719-94BI24514. 2000 Annual Report to the Bonneville Power Administration, Portland, Oregon.

Takata, H. K., and D. L. Ward. 2002. Development of a system-wide predator control program: fisheries evaluation. Oregon Department of Fish and Wildlife, Contract Number DE-B1719-94BI24514. 2001 Annual Report to the Bonneville Power Administration, Portland, Oregon.

Timmons, T. J., and M. H. Howell. 1995. Retention of anchor and spaghetti tags by paddlefish, catfishes, and buffalo fishes. North American Journal of Fisheries Management 15:504-506.

USGS (U.S. Geological Survey). 2006. NWIS Web data for Oregon 1995 - 2006. U.S. Geological Survey. Available: www.waterdata.usgs.gov/or/nwis. (December 2006).

Vigg, S., T. P. Poe, L. A. Prendergast, and H. C. Hansel. 1991. Rates of consumption of juvenile salmonids and alternative prey fish by northern squawfish, walleyes, smallmouth bass, and channel catfish in John Day Reservoir, Columbia River. Transactions of the American Fisheries Society 120:421-438.

WDFW (Washington Department of Fish and Wildlife). 2006. 2006 northern pikeminnow sport reward payment schedule. Northern pikeminnow sport reward program. Available: http://www.pikeminnow.org/. (December 2006).

Ward, D. L., J. H. Petersen, and J. J. Loch. 1995. Index of predation on juvenile salmonids by northern squawfish in the lower and middle Columbia River and in the lower Snake River. Transactions of the American Fisheries Society 124:321334.

Ward, D. L., and M. P. Zimmerman. 1999. Response of smallmouth bass to sustained removals of northern pikeminnow in the lower Columbia and Snake Rivers. Transactions of the American Fisheries Society 128:1020-1035.

Willis, D. W., K. D. McCloskey, and D. W. Gabelhouse, Jr. 1985. Calculation of stock density indices based on adjustments for efficiency of gill-net mesh size. North American Journal of Fisheries Management 5:126-137.

Wismar, R. C., and five coauthors. 1994. A history of resource use and disturbance in riverine basins of eastern Oregon and Washington (early 1800s-1900s). Northwest Science 68(Special Issue):1-35.

Zimmerman, M. P. 1999. Food habits of smallmouth bass, walleyes, and northern pikeminnow in the lower Columbia River Basin during outmigration of juvenile anadromous salmonids. Transactions of the American Fisheries Society 128:9951007.

Zimmerman, M. P., T. A. Friesen, D. L. Ward, and H. K. Takata. 2000. Development of a system-wide predator control program: indexing and fisheries evaluation. Oregon Department of Fish and Wildlife, Contract Number DE-B171994BI24514. 1999 Annual Report to the Bonneville Power Administration, Portland, Oregon.

Zimmerman, M. P., C. Knutsen, D. L. Ward, and K. Anderson. 1995. Development of a system-wide predator control program: Indexing and fisheries evaluation. Oregon Department of Fish and Wildlife, Contract number DE-AI79-90BP07084. 1993 Annual Report to the Bonneville Power Administration, Portland, Oregon.

Zimmerman, M. P., and D. L. Ward. 1999. Index of predation on juvenile salmonids by northern pikeminnow in the lower Columbia River basin, 1994-1996. Transactions of the American Fisheries Society 128:995-1007.

Appendix A

Sampling Effort and Timing in the Lower Columbia and Snake Rivers

Appendix Table A-1.—Dates of 2006 sampling weeks.

Sampling Week	Dates
13	20 March - 26 March
14	27 March - 2 April
15	3 April - 9 April
16	10 April - 16 April
17	17 April - 23 April
18	24 April-30 April
19	1 May - 7 May
20	8 May - 14 May
21	15 May - 21 May
22	22 May - 28 May
23	29 May - 4 June
24	5 June - 11 June
25	12 June - 18 June
26	19 June - 25 June
27	26 June - 2 July
28	3 July - 9 July
29	10 July - 16 July
30	17 July - 23 July
31	24 July - 30 July
32	31 July - 6 August
33	7 August - 13 August
34	14 August - 20 August
35	21 August - 27 August
36	28 August - 3 September
37	4 September - 10 September
38	11 September - 17 September
39	18 September - 24 September
40	25 September - 1 October
41	2 October - 8 October
42	9 October - 15 October

Appendix Table A-2. -Sampling effort (number of 15-minute electrofishing runs) for biological indexing in the lower Columbia and Snake rivers, 1990-1996, 1999, and 20042006. rkm $=$ river kilometer and "-" $=$ area not sampled.

Reservoir/area, reach	Effort										
	1990	1991	1992	1993	1994	1995	1996	1999	2004	2005	2006
Below											
Bonneville Dam											
rkm 114-121	-	-	68	-	36	45	43	44	22	48	-
rkm 172-178	-	-	65	-	33	36	35	47	31	48	-
rkm 190-197	-	-	64	-	43	40	40	40	32	48	-
Tailrace	39	-	60	25	35	24	31	29	55	82	-
Bonneville											
Forebay	47	-	-	35	97	79	80	62	35	101	-
Mid-reservoir	52	-	-	28	84	45	57	57	35	58	-
Tailrace	52	-	-	31	68	80	69	71	43	74	-
The Dalles											
Forebay	62	-	-	31	92	62	59	-	-	-	78
Mid-reservoir	-	-	-	-	-	-	-	-	-	-	95
Tailrace	56	-	-	26	48	35	31	71	5	-	74
John Day											
Forebay	56	61	68	44	91	75	75	52	28	-	75
Mid-reservoir	61	58	62	43	43	94	94	-	15	-	80
Tailrace	55	59	64	46	74	80	80	62	51	-	76
Lower											
Monumental											
Tailrace	-	56	-	-	44	46	32	14	30	-	-
Little Goose											
Tailrace	-	57	-	-	39	40	37	29	30	-	-
Lower Granite rkm 222-228	-	55	-	-	85	89	89	75	34	-	-

Appendix Figure A-1.-Timing of index sampling in 2006 with respect to juvenile salmonid passage (all species) at John Day and McNary dams. Shaded areas indicate dates of sampling in the vicinity of each dam. The passage index is the number of fish passing the dam, adjusted for river flow.

Appendix B

Exploitation Rates for Northern Pikeminnow

Appendix Table B-1.-Number of northern pikeminnow tagged and recaptured in the sport- reward fishery during 2006.

Area or reservoir	$\geq 200 \mathrm{~mm}$ FL		200-249 mm FL		$\geq 250 \mathrm{~mm} \mathrm{FL}$	
	Tagged	Recaptured	Tagged	Recaptured	Tagged	Recaptured
Below Bonneville Dam	467	$64^{\text {a }}$	80	7	387	$57^{\text {a }}$
Bonneville	501	$49^{\text {a }}$	229	14	272	$35^{\text {a }}$
The Dalles	48	$10^{\text {a }}$	5	0	43	$10^{\text {a }}$
John Day	41	0	18	0	23	0
McNary	106	8	6	0	100	8
Little Goose	125	$22^{\text {a }}$	88	13	37	$9^{\text {a }}$
Lower Granite	42	2	23	0	19	2
All areas	1,330	155	449	34	881	121

${ }^{\text {a }}$ Includes fish recaptured in a different area or reservoir than originally tagged and not included in area or reservoir-specific exploitation rate calculations.

APPENDIX TABLE B-2.-Exploitation rates (\%) of northern pikeminnow $\geq 200 \mathrm{~mm}$ FL for the sport-reward fishery, 2001-2006. Exploitation rates were not corrected for tag loss in 2001 and 2002. $X=$ no exploitation rate calculated $(n<4)$ and "-" $=$ area not sampled.

Area or reservoir	2001	2002	2003	2004	2005	2006
Below Bonneville Dam	15.9	10.8	11.8	18.8	21.6	14.6
Bonneville	8.6	5.0	11.0	11.7	8.0	10.5
The Dalles	X	X	X	X	14.9	22.4
John Day	X	X	X	X	X	X
McNary	26.0	7.6	6.6	X	9.6	10.7
Little Goose	-	-	-	-	-	20.0
Lower Granite	9.4	11.6	X	19.6	X	X
All areas	15.5	10.6	10.5	17.0	16.3	14.6

Appendix Table B-3.-Exploitation rates (\%) of northern pikeminnow 200-249 mm FL for the sport-reward fishery, 2001 - 2006. Exploitation rates were not corrected for tag loss in 2001 and 2002. $\mathrm{X}=$ no exploitation rate calculated $(n<4)$ and "-" $=$ area not sampled.

Area or reservoir	2001	2002	2003	2004	2005	2006
Below Bonneville Dam	X	3.1	X	X	X	9.6
Bonneville	X	X	X	X	X	6.7
The Dalles	X	X	X	X	X	X
John Day	X	X	X	X	X	X
McNary	X	X	X	X	X	X
Little Goose	-	-	-	-	-	17.4
Lower Granite	X	X	X	X	X	X
All areas	10.6	3.4	X	10.9	X	9.9

APPENDIX TABLE B-4.-Exploitation rates (\%) of northern pikeminnow $\geq 250 \mathrm{~mm}$ FL for the sport-reward fishery, 2001-2006. Exploitation rates were not corrected for tag loss in 2001 and 2002. $\mathrm{X}=$ no exploitation rate calculated $(n<4)$ and "-" $=$ area not sampled.

Area or reservoir	2001	2002	2003	2004	2005	2006
Below Bonneville Dam	16.2	12.6	13.6	20.1	23.1	15.6
Bonneville	8.5	6.0	16.7	9.3	8.2	13.7
The Dalles	X	X	X	X	18.0	25.3
John Day	X	X	X	X	X	X
McNary	26.0	7.7	8.2	X	13.0	11.2
Little Goose	-	-	-	-	-	26.3
Lower Granite	X	14.3	X	23.8	X	X
All areas	16.2	12.3	13.0	18.5	19.0	17.1

Appendix Table B-5.-System-wide weekly exploitation rates of northern pikeminnow $\geq 200 \mathrm{~mm}$ FL for the sport-reward fishery in 2006. Dashes indicate either no tagging effort, no recapture effort, or no exploitation calculated.

Sampling Week	Tagged	Recaptured	At-Large	Exploitation ${ }^{\text {a }}$ (\%)
12	-	-	--	-
13	1	-	--	-
14	-	-	1	-
15	36	-	1	-
16	121	-	37	-
17	363	-	158	-
18	447	-	521	-
19	55	6	968	0.7
20	11	2	1017	0.2
21	23	7	1026	0.8
22	5	4	1042	0.4
23	30	2	1043	0.2
24	131	13	1071	1.3
25	36	14	1189	1.3
26	71	15	$1210^{\text {b }}$	1.4
27	-	16	$1265{ }^{\text {b }}$	1.4
28	-	10	$1248{ }^{\text {b }}$	0.9
29	-	5	$1237{ }^{\text {b }}$	0.4
30	-	6	1232	0.5
31	-	5	1226	0.4
32	-	0	1221	0.0
33	-	5	1221	0.5
34	-	9	1216	0.8
35	-	5	1207	0.5
36	-	2	1202	0.2
37	-	8	1200	0.7
38	-	5	1192	0.5
39	-	5	1187	0.5
40	-	5	1182	0.5
41	-	3	1177	0.3
42	-	3	1174	0.3
Total	1330	155	1171	14.6

[^3]Appendix Table B-6.-The Dalles Reservoir weekly exploitation rates of northern pikeminnow $\geq 200 \mathrm{~mm}$ FL for the sport-reward fishery in 2006. Dashes indicate either no tagging effort, no recapture effort, or no exploitation calculated.

Sampling Week	Tagged	Recaptured	At-Large	Exploitation ${ }^{\text {a }}$ (\%)
12	-	-	-	-
13	-	-	-	-
14	-	-	0	-
15	-	-	0	-
16	-	-	0	-
17	-	-	0	-
18	-	-	0	-
19	48	0	0	0.0
20	-	0	48	0.0
21	-	1	48	2.3
22	-	0	47	0.0
23	-	0	47	0.0
24	-	0	47	0.0
25	-	2	47	4.7
26	-	2	45	4.9
27	-	2	43	5.1
28	-	0	41	0.0
29	-	1	40	2.7
30	-	0	39	0.0
31	-	1	39	2.7
32	-	0	39	0.0
33	-	0	39	0.0
34	-	0	39	0.0
35	-	0	39	0.0
36	-	0	39	0.0
37	-	0	39	0.0
38	-	0	39	0.0
39	-	0	39	0.0
40	-	0	39	0.0
41	-	0	39	0.0
42	-	0	39	0.0
Total	48	9	39	22.4

[^4]Appendix Table B-7.-John Day Reservoir weekly exploitation rates of northern pikeminnow $\geq 200 \mathrm{~mm}$ FL for the sport-reward fishery in 2006. Dashes indicate either no tagging effort, no recapture effort, or no exploitation calculated.

Sampling Week	Tagged	Recaptured	At-Large	Exploitation ${ }^{\text {a }}$ (\%)
12	-	-	0	-
13	-	-	0	-
14	-	-	0	-
15	-	-	0	-
16	-	-	0	-
17	-	-	0	-
18	-	-	0	-
19	7	-	0	0.0
20	11	-	7	0.0
21	23	0	18	0.0
22	-	0	41	0.0
23	-	0	41	0.0
24	-	0	41	0.0
25	-	0	41	0.0
26	-	0	$40^{\text {b }}$	0.0
27	-	0	40	0.0
28	-	0	40	0.0
29	-	0	40	0.0
30	-	0	40	0.0
31	-	0	40	0.0
32	-	0	40	0.0
33	-	0	40	0.0
34	-	0	40	0.0
35	-	0	40	0.0
36	-	0	40	0.0
37	-	0	40	0.0
38	-	0	40	0.0
39	-	0	40	0.0
Total	41	0	40	0.0

[^5]Appendix Table B-8.-McNary Reservoir weekly exploitation rates of northern pikeminnow $\geq 200 \mathrm{~mm}$ FL for the sport-reward fishery in 2006. Dashes indicate either no tagging effort, no recapture effort, or no exploitation calculated.

Sampling Week	Tagged	Recaptured	At-Large	Exploitation ${ }^{\text {a }}$ (\%)
12	-	-	0	-
13	-	-	0	-
14	-	-	0	-
15	-	-	0	-
16	-	-	0	-
17	-	-	0	-
18	-	-	0	-
19	-	-	0	-
20	-	-	0	-
21	-	0	0	0.0
22	5	0	0	0.0
23	30	0	5	0.0
24	-	1	35	3.1
25	-	0	34	0.0
26	71	0	34	0.0
27	-	1	105	1.0
28	-	1	104	1.1
29	-	0	103	0.0
30	-	0	103	0.0
31	-	1	103	1.1
32	-	0	102	0.0
33	-	2	102	2.2
34	-	0	100	0.0
35	-	0	100	0.0
36	-	0	100	0.0
37	-	1	100	1.1
38	-	0	99	0.0
39	-	0	99	0.0
40	-	1	99	1.1
41	-	0	98	0.0
42	-	0	98	0.0
Total	106	8	98	10.7

[^6]Appendix Table B-9.-Little Goose Reservoir weekly exploitation rates of northern pikeminnow $\geq 200 \mathrm{~mm}$ FL for the sport-reward fishery in 2006. Dashes indicate either no tagging effort, no recapture effort, or no exploitation calculated.

Sampling Week	Tagged	Recaptured	At-Large	Exploitation ${ }^{\text {a }}$ (\%)
12	-	-	0	-
13	-	-	0	-
14	-	-	0	-
15	-	-	0	-
16	-	-	0	-
17	-	-	0	-
18	-	-	0	-
19	-	-	0	-
20	-	-	0	-
21	-	0	0	0.0
22	-	0	0	0.0
23	-	0	0	0.0
24	125	2	123	1.8
25	-	0	123	0.0
26	-	0	123	0.0
27	-	0	123	0.0
28	-	3	123	2.7
29	-	1	120	0.9
30	-	2	119	1.8
31	-	2	117	1.9
32	-	0	115	0.0
33	-	0	115	0.0
34	-	3	115	2.9
35	-	0	112	0.0
36	-	1	112	1.0
37	-	3	111	3.0
38	-	1	108	1.0
39	-	0	107	0.0
40	-	1	107	1.0
41	-	0	106	0.0
42	-	2	106	2.1
Total	125	21	104	20.0

[^7]Appendix Table B-10.-Lower Granite Reservoir weekly exploitation rates of northern pikeminnow $\geq 200 \mathrm{~mm}$ FL for the sport-reward fishery in 2006. Dashes indicate either no tagging effort, no recapture effort, or no exploitation calculated.

Sampling Week	Tagged	Recaptured	At-Large	Exploitation ${ }^{\text {a }}$ (\%)
12	-	-		-
13	-	-		-
14	-	-	0	-
15	-	-	0	-
16	-	-	0	-
17	-	-	0	-
18	-	-	0	-
19	-	0	0	0.0
20	-	0	0	0.0
21	-	0	0	0.0
22	-	0	0	0.0
23	-	0	0	0.0
24	6	0	0	0.0
25	36	0	6	0.0
26	-	0	42	0.0
27	-	0	42	0.0
28	-	0	42	0.0
29	-	0	42	0.0
30	-	1	42	2.6
31	-	0	41	0.0
32	-	0	41	0.0
33	-	0	41	0.0
34	-	0	41	0.0
35	-	1	41	2.7
36	-	0	40	0.0
37	-	0	40	0.0
38	-	0	40	0.0
39	-	0	40	0.0
40	-	0	40	0.0
41	-	0	40	0.0
42	-	0	40	0.0
Total	42	2	40	5.3

[^8]
Appendix C

Biological Evaluation of Northern Pikeminnow, Smallmouth Bass, and Walleye in the Lower Columbia and Snake Rivers, 1990 - 2006

Appendix Table C-1.-Catch per 15-minute electrofishing run (CPUE) of northern pikeminnow $\geq 250 \mathrm{~mm}$ fork length captured during biological indexing of the lower Columbia River in 1990-1996, 1999, 2004, and 2006. "-" = area not sampled.

	The Dalles Reservoir			John Day Reservoir		
	Forebay	Mid-reservoir	Tailrace	Forebay	Mid-reservoir	Tailrace
1990	1.1	0.6	2.8	0.7	0.3	0.8
1991	-	-	-	0.7	0.2	0.8
1992	-	-	-	1.3	0.3	0.1
1993	1.2	0.5	0.7	0.6	0.2	0.5
1994	0.6	-	0.7	0.7	0.1	0.3
1995	0.6	-	1.6	0.3	0.1	0.3
1996	0.4	-	3.7	0.3	0.1	0.5
1999	-	-	0.8	0.2	-	0.2
2004	-	-	0.4	<0.1	0.0	0.1
2006	0.2	0.2	0.2	<0.1	<0.1	0.1

Appendix Table C-2.-Spring and summer catch per 15-minute electrofishing run (CPUE) of northern pikeminnow $\geq 250 \mathrm{~mm}$ FL captured in 2006 during biological indexing in the lower Columbia River.

	CPUE	
Area, reach	Spring	Summer
The Dalles		
Forebay	0.3	0.1
Mid-reservoir	0.3	0.0
Tailrace	0.1	0.3
John Day	0.1	0.0
Forebay	0.1	0.0
Mid-reservoir	0.2	0.1
Tailrace		

APPENDIX TABLE C-3.-Spring and summer catch per 15-minute electrofishing run (CPUE) of smallmouth bass $\geq 200 \mathrm{~mm}$ FL captured in 2006 during biological indexing in the lower Columbia River.

	CPUE	
Area, reach	Spring	Summer
The Dalles		
Forebay	4.9	3.0
Mid-reservoir	5.2	3.0
Tailrace	2.5	4.6
John Day		
Forebay	2.8	2.9
Mid-reservoir	6.1	6.8
Tailrace	1.6	2.5

Appendix Table C-4.-Spring and summer catch per 15-minute electrofishing run (CPUE) of walleye $\geq 200 \mathrm{~mm}$ FL captured in 2006 during biological indexing in the lower Columbia River.

	CPUE	
Area, reach	Spring	Summer
The Dalles		
Forebay	0.1	0.0
Mid-reservoir	0.1	<0.1
Tailrace	0.5	0.2
John Day	0.0	0.0
Forebay	0.0	0.1
Mid-reservoir	2.0	1.1
Tailrace		

Appendix Table C-5.-Abundance index values for northern pikeminnow $\geq 250 \mathrm{~mm}$ fork length in the lower Columbia River, 1990-1996, 1999, 2004, and 2006. "-" = not sampled.

	The Dalles Reservoir			John Day Reservoir		
	Forebay	Mid-reservoir	Tailrace	Forebay	Mid-reservoir	Tailrace
1990	1.4	2.4	2.7	1.4	5.1	1.4
1991	-	-	-	1.3	4.7	1.4
1992	-	-	-	2.4	6.7	0.2
1993	1.6	2.0	0.7	1.2	3.1	0.9
1994	0.7	-	0.6	1.4	2.4	0.5
1995	0.5	-	1.5	0.5	1.0	0.6
1996	0.6	-	3.6	0.6	1.1	1.0
1999	-	-	0.8	0.3	-	0.4
2004	-	-	0.4	0.1	0.0	0.3
2006	0.2	0.7	0.2	<0.1	0.5	0.2

Appendix Table C-6.-Spring relative density of smallmouth bass $\geq 200 \mathrm{~mm}$ fork length in the lower Columbia River, 1990-1996, 1999, 2004, and 2006. "-" = not sampled. Relative density is mean transformed catch $\left(\log _{10}\right.$ (catch+1)) per 15-minute electrofishing run.

	The Dalles Reservoir			John Day Reservoir		
	Forebay	Mid-reservoir	Tailrace	Forebay	Mid-reservoir	Tailrace
1990	0.2	-	0.2	0.5	0.5	<0.1
1991	-	-	-	0.3	0.6	0.1
1992	-	-	-	0.4	0.2	0.2
1993	0.5	0.6	0.4	-	-	-
1994	0.3	-	-	0.3	0.3	0.1
1995	0.6	-	-	0.4	0.4	0.1
1996	0.5	-	-	0.3	0.5	<0.1
1999	-	-	0.2	0.1	--	<0.1
2004	-	-	0.0	1.0	0.5	<0.1
2006	0.7	0.7	0.4	0.5	0.8	0.3

Appendix Table C-7.-Summer relative density of smallmouth bass $\geq 200 \mathrm{~mm}$ fork length in the lower Columbia River, 1990-1996, 1999, 2004, and 2006. "-" = not sampled. Relative density is mean transformed catch $\left(\log _{10}\right.$ (catch+1)) per 15-minute electrofishing run.

	The Dalles Reservoir			John Day Reservoir		
	Forebay	Mid-reservoir	Tailrace	Forebay	Mid-reservoir	Tailrace
1990	0.1	0.1	0.1	0.4	0.2	0.1
1991	-	-	-	0.3	0.1	0.1
1992	-	-	-	0.3	0.3	0.1
1993	0.3	0.4	0.3	0.4	0.4	0.3
1994	0.3	-	0.2	0.5	0.2	0.1
1995	0.4	-	0.1	0.4	0.6	0.1
1996	0.2	-	0.2	0.3	0.4	0.1
1999	-	-	0.4	0.4	-	0.1
2004	-	-	0.0	0.9	-	0.3
2006	0.5	0.5	0.6	0.4	0.8	0.4

Appendix Table C-8.-Spring relative density of walleye $\geq 200 \mathrm{~mm}$ fork length in the lower Columbia River, 1990-1996, 1999, 2004, and 2006. "-" = not sampled. Relative density is mean transformed catch $\left(\log _{10}(\right.$ catch +1$\left.)\right)$ per 15-minute electrofishing run.

	The Dalles Reservoir			John Day Reservoir		
	Forebay	Mid-reservoir	Tailrace	Forebay	Mid-reservoir	Tailrace
1990	0.0	-	0.1	0.0	0.0	0.1
1991	-	-	-	0.0	<0.1	0.1
1992	-	-	-	0.0	0.0	<0.1
1993	0.1	0.1	0.2	-	-	-
1994	0.0	-	-	0.0	0.0	0.2
1995	<0.1	-	-	<0.1	0.0	0.1
1996	<0.1	-	-	0.0	0.0	0.2
1999	-	-	0.1	0.0	-	0.1
2004	-	-	0.0	0.0	<0.1	0.2
2006	<0.1	<0.1	0.1	0.0	0.0	0.3

APPENDIX TABLE C-9.-Summer relative density of walleye $\geq 200 \mathrm{~mm}$ fork length in the lower Columbia River, 1990-1996, 1999, 2004, and 2006. "-" = not sampled. Relative density is mean transformed catch $\left(\log _{10}(\right.$ catch +1$\left.)\right)$ per 15 -minute electrofishing run.

	The Dalles Reservoir			John Day Reservoir		
	Forebay	Mid-reservoir	Tailrace	Forebay	Mid-reservoir	Tailrace
1990	0.0	0.0	<0.1	0.0	0.0	<0.1
1991	-	-	-	0.0	0.0	0.0
1992	-	-	-	0.0	0.0	<0.1
1993	0.0	<0.1	<0.1	0.0	0.0	<0.1
1994	<0.1	-	<0.1	0.0	0.0	0.1
1995	<0.1	-	<0.1	0.0	<0.1	0.1
1996	<0.1	-	0.1	0.0	<0.1	0.1
1999	-	-	0.1	0.0	-	0.1
2004	-	-	<0.1	<0.1	-	0.2
2006	0.0	<0.1	<0.1	0.0	<0.1	0.2

Appendix Table C-10.-Number (N) of northern pikeminnow, smallmouth bass, and walleye digestive tracts examined from the lower Columbia River in 2006, and percent that contained food, fish, and Oncorhynchus spp. (Sal).

Season, area	Northern pikeminnow				Smallmouth bass				Walleye			
	N	Percent			N	Percent			N	Percent		
		Food	Fish	Sal		Food	Fish	Sal		Food	Fish	Sal
Spring												
The Dalles Reservoir	28	39	11	7	509	79	14	<1	26	65	35	15
John Day Reservoir	5	40	20	20	379	87	11	1	73	64	49	29
All areas	33	39	12	9	888	82	13	1	99	65	47	25
Summer												
The Dalles Reservoir	19	21	16	16	448	86	13	1	7	43	29	0
John Day Reservoir	10	30	20	20	504	86	15	2	46	57	52	22
All areas	29	24	17	17	952	86	14	1	53	55	49	19

Appendix Table C-11.-Percent species composition of fish consumed by northern pikeminnow, smallmouth bass, and walleye in the lower Columbia River, 2006. TDA = The Dalles Reservoir, JDY = John Day Reservoir, and $n=$ number of samples containing identifiable fish.

Genus, species	Northern pikeminnow		Smallmouth bass		Walleye	
	$\begin{aligned} & \text { TDA } \\ & (n=5) \end{aligned}$	$\begin{gathered} \text { JDY } \\ (n=3) \end{gathered}$	$\begin{gathered} \text { TDA } \\ (n=97) \end{gathered}$	$\begin{gathered} \text { JDY } \\ (n=80) \end{gathered}$	$\begin{aligned} & \text { TDA } \\ & (n=8) \end{aligned}$	$\begin{gathered} \text { JDY } \\ (n=46) \end{gathered}$
Oncorhynchus spp.	100.0	100.0	5.4	13.6	63.6	70.8
Prosopium williamsoni	0.0	0.0	0.0	3.4	0.0	3.1
Cottus spp.	0.0	0.0	81.3	68.2	0.0	20.0
Lampetra spp.	0.0	0.0	0.9	1.1	0.0	3.1
Mylocheilus caurinus	0.0	0.0	1.8	1.1	9.1	1.5
Ptylocheilus oregonensis	0.0	0.0	0.0	0.0	9.1	0.0
Catostomus spp.	0.0	0.0	1.8	2.3	18.2	1.5
Ictaluridae*	0.0	0.0	1.8	2.3	0.0	0.0
Micropterus spp.	0.0	0.0	4.5	5.7	0.0	0.0
Perca flavescens	0.0	0.0	2.7	2.3	0.0	0.0

* Both Ameiurus spp. and Ictalurus spp. may be included in this category

APPENDIX TABLE C-12.-Spring consumption indices for northern pikeminnow ≥ 250 mm fork length in the lower Columbia River in 1990-1996, 1999, 2004, and 2006. $\mathrm{FB}=$ Forebay, $\mathrm{M}=$ Mid-Reservoir, $\mathrm{TR}=$ Tailrace, TR BRZ $=$ Tailrace Boat Restricted Zone, $X=$ no consumption index calculated $(n \leq 5), a=$ no northern pikeminnow collected, and "-" = area not sampled.

	The Dalles Reservoir				John Day Reservoir			
	FB	M	TR	$\begin{gathered} \text { TR } \\ \text { BRZ } \end{gathered}$	FB	M	TR	$\begin{gathered} \text { TR } \\ \text { BRZ } \end{gathered}$
1990	0.8	-	0.7	0.9	1.5	0.0	1.5	2.5
1991	-	-	-	-	1.9	0.5	0.9	1.5
1992	-	-	-	-	1.9	0.0	0.0	0.9
1993	0.1	-	0.0	X	1.5	X	2.0	-
1994	0.1	-	--	-	1.0	X	0.3	0.7
1995	0.0	-	--	-	1.7	X	0.8	-
1996	0.0	-	--	-	X	X	0.5	-
1999	-	-	0.5	-	1.2	-	1.7	-
2004	-	-	X	-	a	a	0.0	-
2006	0.0	0.5	X	-	X	X	0.3	-

Appendix Table C-13.-Summer consumption indices for northern pikeminnow ≥ 250 mm fork length in the lower Columbia River in 1990-1996, 1999, 2004, and 2006. $\mathrm{FB}=$ Forebay, $\mathrm{M}=$ Mid-Reservoir, $\mathrm{TR}=$ Tailrace, TR BRZ $=$ Tailrace Boat Restricted Zone, $X=$ no consumption index calculated $(n \leq 5), a=$ no northern pikeminnow collected, and "-" = area not sampled.

	The Dalles Reservoir				John Day Reservoir			
	FB	M	TR	$\begin{gathered} \text { TR } \\ \text { BRZ } \end{gathered}$	FB	M	TR	$\begin{gathered} \text { TR } \\ \text { BRZ } \end{gathered}$
1990	1.0	-	0.0	6.4	2.4	0.9	2.6	11.7
1991	-	-	-	-	3.1	X	0.0	2.8
1992	-	-	-	-	0.7	0.0	X	4.6
1993	0.0	-	0.0	0.5	0.6	0.6	0.0	0.6
1994	0.0	-	0.8	1.2	1.2	0.6	X	1.9
1995	0.0	-	0.0	2.2	2.0	X	0.6	-
1996	0.0	-	0.7	X	0.4	X	0.3	-
1999	-	-	0.0	--	X	-	0.0	-
2004	-	-	5.5	a	X	-	X	-
2006	X	X	5.7	-	a	a	X	-

APPENDIX TABLE C-14.-Spring consumption indices for smallmouth bass $\geq 200 \mathrm{~mm}$ fork length in the lower Columbia River in 1990-1996, 1999, 2004, and 2006. FB = Forebay, $\mathrm{M}=$ Mid-Reservoir, $\mathrm{TR}=$ Tailrace, $\mathrm{X}=$ no consumption index calculated ($n \leq$ 5), $a=$ no smallmouth bass collected, and "-" = area not sampled.

	The Dalles Reservoir			John Day Reservoir		
	FB	M	TR	FB	M	TR
1990	a	a	a	0.1	0.0	a
1991	a	a	a	0.0	0.0	X
1992	a	a	a	0.1	0.0	X
1993	a	a	a	0.0	0.0	X
1994	a	a	a	0.1	0.0	0.0
1995	a	a	a	0.0	0.0	0.0
1996	a	a	a	0.0	0.0	0.0
1999	a	a	a	0.1	-	X
2004	a	a	a	0.1	0.0	a
2006	0.0	<0.1	0.0	0.0	<0.1	<0.1

Appendix Table C-15.-Summer consumption indices for smallmouth bass $\geq 200 \mathrm{~mm}$ fork length in the lower Columbia River in 1990-1996, 1999, 2004, and 2006. $\mathrm{FB}=$ Forebay, $\mathrm{M}=$ Mid-Reservoir, $\mathrm{TR}=$ Tailrace, $\mathrm{X}=$ no consumption index calculated ($n \leq$ 5), $a=$ no smallmouth bass collected, and "-" = area not sampled.

	The Dalles Reservoir		John Day Reservoir										
	FB								M	TR	FB	M	TR
1990	a	a	a	0.3	0.3	0.0							
1991	a	a	a	0.5	0.0	0.1							
1992	a	a	a	0.2	X	0.0							
1993	a	a	a	0.7	0.1	0.0							
1994	a	a	a	0.2	0.0	0.0							
1995	a	a	a	0.3	0.0	0.0							
1996	a	a	a	0.1	0.0	0.0							
1999	a	a	a	0.2	-	0.0							
2004	a	a	a	<0.1	-	0.2							
2006	0.0	<0.1	<0.1	0.1	<0.1	<0.1							

APPENDIX TABLE C-16.-Spring predation indices for northern pikeminnow $\geq 250 \mathrm{~mm}$ fork length in The Dalles and John Day reservoirs, 1990-1996, 1999, 2004, and 2006. "-" = not sampled, $\mathrm{a}=$ no northern pikeminnow collected, and $\mathrm{X}=$ no predation index calculated ($n \leq 5$).

	The Dalles Reservoir			John Day Reservoir		
	Forebay	Mid-reservoir	Tailrace	Forebay	Mid-reservoir	Tailrace
1990	1.1	-	1.9	2.1	0.0	2.2
1991	-	-	-	2.5	2.4	1.3
1992	-	-	-	4.7	0.0	0.0
1993	0.2	-	0.0	1.9	X	1.8
1994	0.1	-	-	1.3	X	0.2
1995	0.0	-	-	0.9	X	0.5
1996	0.0	-	-	X	X	0.3
1999	-	-	0.4	0.4	-	0.7
2004	-	-	X	a	a	0.0
2006	0.0	0.4	X	X	X	0.1

Appendix Table C-17.-Summer predation indices for northern pikeminnow $\geq 250 \mathrm{~mm}$ fork length in The Dalles and John Day reservoirs, 1990-1996, 1999, 2004, and 2006. " $-"$ = area not sampled, $\mathrm{a}=$ no northern pikeminnow collected, and $\mathrm{X}=$ no predation index calculated $(n \leq 5)$.

	The Dalles Reservoir				John Day Reservoir		
	Forebay	Mid-reservoir	Tailrace		Forebay	Mid-reservoir	Tailrace
1990	1.4	-	0.0		3.4	4.6	3.7
1991	-	-	-		4.0	X	0.0
1992	-	-	-		1.7	0.0	X
1993	0.0	-	0.0		0.7	1.9	0.4
1994	0.0	-	0.5		1.6	1.4	X
1995	0.0	-	0.0		1.0	X	0.4
1996	0.0	-	2.5		0.2	X	0.2
1999	-	-	0.0		X	-	0.0
2004	-	-	2.0		X	-	X
2006	X	X	1.1	a	a	X	

Appendix Table C-18.-Spring and summer predation indices for smallmouth bass \geq 200 mm fork length in The Dalles and John Day reservoirs, 2004 and 2006. "-" = area not sampled.

	Predation index				
Area, reach	Spring			Summer	
	2004	2006		2004	2006
The Dalles					0.0
Forebay	-	0.0		-	0.4
Mid-reservoir	-	0.3		-	0.1
Tailrace	0.0	0.0		2.0	
John Day				0.8	0.4
Forebay	1.6	0.0		0.0	2.8
Mid-reservoir	2.3	1.1		0.5	0.2
Tailrace	0.0	0.1		0.5	

Appendix Table C-19.-Spring and summer predation indices for northern pikeminnow $\geq 250 \mathrm{~mm}$ fork length and smallmouth bass $\geq 200 \mathrm{~mm}$ fork length in The Dalles and John Day reservoirs, 2006. $\mathrm{X}=$ no predation index calculated $(n \leq 5)$ and $\mathrm{a}=$ no northern pikeminnow collected.

Area, reach	Predation index			
	Northern pikeminnow		Smallmouth bass	
	Spring	Summer	Spring	Summer
The Dalles				
Forebay	0.0	X	0.0	0.0
Mid-reservoir	0.4	X	0.3	0.4
Tailrace	X	1.1	0.0	0.1
John Day				
Forebay	X	a	0.0	0.4
Mid-reservoir	X	a	1.1	2.8
Tailrace	0.1	X	0.1	0.2

Report D

Dam Angling Test Fishery - 2006

Prepared by

Russell Porter
Pacific States Marine Fisheries Commission

Introduction.

The Pacific States Marine Fisheries Commission contracted with the U.S. Department of Agriculture, Wildlife Services to conduct test fisheries from the dam structures at Bonneville and The Dalles dam during the 2006 season. The U.S. Department of Agriculture has conducted pikeminnow fisheries in the upper Columbia River projects for the Public Utility districts in past years.

Methods.

Two five man fishing crews were utilized to conduct dam angling test fisheries from May 1, 2006 through August 6, 2006 using traditional hook and line gear. The work was conducted at Bonneville and The Dalles dams fishing from the structures and in the Boat Restricted Zone (BRZ) by boat at both projects. Two boats were utilized for the BRZ fisheries in accordance with U.S. Army Corps of Engineers safety rules.

Results

Dam Angling. In general, it was found that fishing from the Bonneville dam structure was difficult, as access to the water was only available in a few spots from the dam structure, making fishing difficult in some locations and hazardous in others. As a result, a total of 157 angler hours was spent fishing from Bonneville dam with a harvest of only 19 northern pikeminnow.

Dam angling from The Dalles dam was far more productive than Bonneville and access to the water was much easier. A total of 1,337 angler hours were spent fishing from The Dalles dam with a total harvest of 2,406 northern pikeminnows.

BRZ Angling. Fishing in the boat restricted zone at Bonneville was also somewhat difficult. Getting the boat into the BRZ for fishing activities, especially with a lot of spill occurring was a challenge. A total of 812 angler hours were expended during the three month fishery with a total of 822 northern pikeminnow caught.

A sampling of fish caught below the dam by boat in the BRZ averaged 409 mm (16 inches), while those caught from the dam averaged 422 mm (16.6 inches). Fish caught from the dam in the reservoir above the dam averaged 360 mm (14.2 inches) and those caught by boat averaged 369 mm (14.5 inches).

Since dam angling at The Dalles was readily accessible, fishing in the BRZ was not tested until the last week of the fishery. A total of 80 angler hours were expended fishing in the BRZ at The Dalles with a total catch of 80 northern pikeminnow.

Conclusions

The test fisheries this year determined the methods at Bonneville and The Dalles which may work to harvest northern pikeminnows under current dam operations. The accessibility at Bonneville is an issue in attempting to harvest northern pikeminnow at the dam. Times and methods at The Dalles were tested and determined during this year's
fisheries. A second year of test fisheries will take place in 2007 with fishing being tested at The Dalles and John Day dams. No additional fishing will occur at Bonneville dam.

[^0]: ${ }^{1}$ The common name of the northern squawfish was recently changed by the American Fisheries Society to northern pikeminnow at the request of the Confederated Tribes and Bands of the Yakama Indian Reservation.

[^1]: Washington Department of Fish and Wildlife
 600 Capitol Way N., Olympia, WA 98501-1091

[^2]: Non-returning Anglers Catch and Harvest Estimates

[^3]: ${ }^{\text {a }}$ Exploitation rates adjusted for tag loss (9.9\%).
 ${ }^{\mathrm{b}}$ Additional fish subtracted from at-large pool due to removal by other fisheries.

[^4]: ${ }^{a}$ Exploitation rates adjusted for tag loss (9.9\%).

[^5]: ${ }^{\text {a }}$ Exploitation rates adjusted for tag loss (9.9\%).
 ${ }^{\mathrm{b}}$ Additional fish subtracted from at-large pool due to removal by other fisheries.

[^6]: ${ }^{\text {a }}$ Exploitation rates adjusted for tag loss (9.9\%).

[^7]: ${ }^{a}$ Exploitation rates adjusted for tag loss (9.9\%).

[^8]: ${ }^{a}$ Exploitation rates adjusted for tag loss (9.9\%).

